The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193539 O.g.f.: exp( Sum_{n>=1} (sigma(2*n)-sigma(n))^3 * x^n/n ). 0
 1, 8, 64, 512, 3200, 19392, 112128, 598016, 3088896, 15362408, 73331264, 340653056, 1538392064, 6762336448, 29072665600, 122299068416, 504128374784, 2040557142592, 8116582974656, 31760991869952, 122408808197120, 464983163273216, 1742277357389312 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Here sigma(n) = A000203(n) is the sum of divisors of n. Compare g.f. to the formula for Jacobi theta_4(x) given by: _ theta_4(x) = exp( Sum_{n>=1} (sigma(n)-sigma(2*n))*x^n/n ) where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2). LINKS EXAMPLE G.f.: A(x) = 1 + 8*x + 64*x^2 + 512*x^3 + 3200*x^4 + 19392*x^5 +... log(A(x)) = 2^3*x + 4^3*x^2/2 + 8^3*x^3/3 + 8^3*x^4/4 + 12^3*x^5/5 + 16^3*x^6/6 + 16^3*x^7/7 + 16^3*x^8/8 + 26^3*x^9/9 +...+ A054785(n)^3*x^n/n +... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m)-sigma(m))^3*x^m/m)+x*O(x^n)), n)} CROSSREFS Cf. A177398, A054785, A186690. Sequence in context: A250350 A171282 A125498 * A228739 A267730 A189155 Adjacent sequences:  A193536 A193537 A193538 * A193540 A193541 A193542 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)