login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193540 E.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi)) where L = Lemniscate constant. 6
1, -1, 9, -153, 4977, -261009, 20039481, -2121958377, 296297348193, -52750142341281, 11662264481073129, -3134732109393169593, 1006734732695870345937, -380718482718134681818929, 167456229155543640166939161, -84761007600911799530893148937 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429...
Compare the definition with that of the dual sequence A193543.
LINKS
T. J. Stieltjes, LXV. Sur les dérivées de sec x, p. 181, Oeuvres complètes, tome 2, Noordhoff, 1918, 617 p.
Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.
FORMULA
Given e.g.f. A(x), define the e.g.f. of A193543:
B(x) = sqrt(2)*Pi/(2*L) * (1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L) / cosh(n*Pi)),
then A(x)^-2 + B(x)^-2 = 2 by Ramanujan's cos/cosh identity.
...
E.g.f. equals the reciprocal of the e.g.f. of A193541.
O.g.f. = 1/(1 + 1^2*x/(1 + 2*2^2*x/(1 + 3^2*x/(1 + 2*4^2*x/(1 + 5^2*x/(1 + 2*6^2*x/(1 + 7^2*x/(1 + 2*8^2*x/(1+...))))))))) (continued fraction).
G.f.: 1/Q(0) where p=2, Q(k) = 1 + x*(2*k+1)^2/( 1 + p*x*(2*k+2)^2/Q(k+1) ); (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Mar 22 2013
a(n) ~ (-1)^n * 2^(7*n + 4) * Pi^(n+1) * n^(2*n + 1/2) / (exp(2*n) * Gamma(1/4)^(4*n + 2)). - Vaclav Kotesovec, Nov 29 2020
EXAMPLE
E.g.f.: A(x) = 1 - x^2/2! + 9*x^4/4! - 153*x^6/6! + 4977*x^8/8! - 261009*x^10/10! + 20039481*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
A(x)*sqrt(2)*L/Pi = 1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +...
Let B(x) equal the e.g.f. of A193543, where:
B(x)*sqrt(2)*L/Pi = 1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +...
explicitly,
B(x) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4977*x^8/8! + 261009*x^10/10! + 20039481*x^12/12! +...
then A(x)^-2 + B(x)^-2 = 2
as illustrated by:
A(x)^-2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...
B(x)^-2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...
...
O.g.f.: 1 - x + 9*x^2 - 153*x^3 + 4977*x^4 - 261009*x^5 + 20039481*x^6 +...+ a(n)*x^n +...
O.g.f.: 1/(1 + x/(1 + 8*x/(1 + 9*x/(1 + 32*x/(1 + 25*x/(1 + 72*x/(1 + 49*x/(1 + 128*x/(1+...))))))))).
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ Tan[ JacobiAmplitude[ x, -1]] / Tan[ JacobiAmplitude[ 2 x, -1] / 2], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *)
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ JacobiND[ x, -1], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *)
Table[SeriesCoefficient[InverseSeries[Series[EllipticF[x, 1/2], {x, 0, 32}]], 2 n + 1] (2 n + 1)! 2^n, {n, 0, 15}] (* Benedict W. J. Irwin, Apr 04 2017 *)
Table[SeriesCoefficient[JacobiDN[Sqrt[2] x, 1/2], {x, 0, 2 k}] (2 k)!, {k, 0, 20}] (* Jan Mangaldan, Nov 28 2020 *)
nmax = 20; s = CoefficientList[Series[JacobiDN[Sqrt[2] x, 1/2], {x, 0, 2*nmax}], x] * Range[ 0, 2*nmax]!; Table[s[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 29 2020 *)
PROG
(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1, cos(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi)));
round((2*n)!*polcoeff(R, 2*n))}
CROSSREFS
Sequence in context: A045755 A009037 A012148 * A193543 A173982 A185759
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 29 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 04:59 EDT 2024. Contains 371264 sequences. (Running on oeis4.)