The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193543 E.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L)/cosh(n*Pi)) where L = Lemniscate constant. 10
 1, 1, 9, 153, 4977, 261009, 20039481, 2121958377, 296297348193, 52750142341281, 11662264481073129, 3134732109393169593, 1006734732695870345937, 380718482718134681818929, 167456229155543640166939161, 84761007600911799530893148937, 48919649166315485705652984573633 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429... Compare the definition with that of the dual sequence A193540. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..234 Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity. FORMULA E.g.f.: cosh( Series_Reversion( Integral 1/sqrt( cosh(2*x) ) dx ) ). - Paul D. Hanna, Aug 14 2017 E.g.f.: sqrt(1 + S(x)^2), where S(x) is the e.g.f. of A289695. - Paul D. Hanna, Aug 14 2017 E.g.f.: 1 + Integral S(x) * sqrt(1 + 2*S(x)^2) dx, where S(x) is the e.g.f. of A289695. - Paul D. Hanna, Aug 14 2017 ... Given e.g.f. A(x), define the e.g.f. of A193540: B(x) = Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L) / cosh(n*Pi)), then A(x)^-2 + B(x)^-2 = 2 by Ramanujan's cos/cosh identity. ... E.g.f. equals the reciprocal of the e.g.f. of A193544. ... O.g.f.: 1/(1 - 1^2*x/(1 - 2*2^2*x/(1 - 3^2*x/(1 - 2*4^2*x/(1 - 5^2*x/(1 - 2*6^2*x/(1 - 7^2*x/(1 - 2*8^2*x/(1-...))))))))) (continued fraction). O.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} 1/(1 - (2*n*Pi/L)^2*x) / cosh(n*Pi)) where L = Lemniscate constant. - Paul D. Hanna, Aug 29 2012 ... a(n) = sqrt(2)*Pi/L * Sum_{k>=1} (2*k*Pi/L)^(2*n) / cosh(k*Pi) for n>0 where L = Lemniscate constant. - Paul D. Hanna, Aug 29 2012 ... G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)^2/(x*(2*k+1)^2 - 1/(1 - 2*x*(2*k+2)^2/(2*x*(2*k+2)^2 - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013 a(n) ~ 2^(7*n + 4) * Pi^(n+1) * n^(2*n + 1/2) / (exp(2*n) * Gamma(1/4)^(4*n + 2)). - Vaclav Kotesovec, Nov 29 2020 EXAMPLE E.g.f.: A(x) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4977*x^8/8! + 261009*x^10/10! + 20039481*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +... where A(x)*sqrt(2)*L/Pi = 1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +... Let B(x) equal the e.g.f. of A193540, where: B(x)*sqrt(2)*L/Pi = 1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +... explicitly, B(x) = 1 - x^2/2! + 9*x^4/4! - 153*x^6/6! + 4977*x^8/8! - 261009*x^10/10! + 20039481*x^12/12! +... then A(x)^-2 + B(x)^-2 = 2 as illustrated by: A(x)^-2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +... B(x)^-2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +... ... O.g.f.: 1 + x + 9*x^2 + 153*x^3 + 4977*x^4 + 261009*x^5 + 20039481*x^6 +...+ a(n)*x^n +... O.g.f.: 1/(1 - x/(1 - 8*x/(1 - 9*x/(1 - 32*x/(1 - 25*x/(1 - 72*x/(1 - 49*x/(1 - 128*x/(1-...))))))))). MATHEMATICA nmax = 20; s = CoefficientList[Series[JacobiDN[Sqrt[2]*x, 1/2], {x, 0, 2*nmax}], x] * Range[ 0, 2*nmax]!; Table[(-1)^n * s[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 29 2020 *) PROG (PARI) {a(n)=local(L=2*(Pi/2)^(3/2)/gamma(3/4)^2); if(n==0, 1, sqrt(2)*Pi/L*suminf(k=1, (2*k*Pi/L)^(2*n)/cosh(k*Pi)))} \\ Paul D. Hanna, Aug 29 2012 for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2); R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1, cosh(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi))); round((2*n)!*polcoeff(R, 2*n))} (PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2); R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1, 1/(1 - (2*m*Pi/L)^2*x+x*O(x^n))/cosh(m*Pi))); round(polcoeff(R, n))} \\ Paul D. Hanna, Aug 29 2012 (PARI) {a(n) = my(C=1); C = cosh( serreverse( intformal( 1/sqrt( cosh(2*x +O(x^(2*n+1))) ) ) ) ); (2*n)!*polcoeff(C, 2*n)} for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 14 2017 CROSSREFS Cf. A193540, A193541, A193542, A193544, A193545. Sequence in context: A009037 A012148 A193540 * A173982 A185759 A215557 Adjacent sequences: A193540 A193541 A193542 * A193544 A193545 A193546 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 02:47 EDT 2023. Contains 363081 sequences. (Running on oeis4.)