|
|
A193545
|
|
E.g.f.: 2*L^2/(Pi^2*(1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L)/cosh(n*Pi) )^2) where L = Lemniscate constant.
|
|
5
|
|
|
1, 0, -2, 0, 0, 0, 144, 0, 0, 0, -96768, 0, 0, 0, 268240896, 0, 0, 0, -2111592333312, 0, 0, 0, 37975288540299264, 0, 0, 0, -1353569484565546795008, 0, 0, 0, 86498911610371173437669376, 0, 0, 0, -9198407234012051081051108278272, 0, 0, 0, 1536583522302562247445395779495133184
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429...
Compare the definition with that of the dual sequence A193542.
|
|
LINKS
|
Table of n, a(n) for n=0..38.
Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.
|
|
FORMULA
|
a(n) = -A193542(n) for n>=1.
|
|
EXAMPLE
|
E.g.f.: A(x) = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...+ a(n)*x^n/n! +...
which equals the square of the e.g.f. B(x) of A193544:
B(x) = 1 - x^2/2! - 3*x^4/4! + 27*x^6/6! + 441*x^8/8! - 11529*x^10/10! - 442827*x^12/12! +...
|
|
PROG
|
(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1, cosh(2*Pi*m*x/L +x*O(x^n))/cosh(m*Pi)));
round(n!*polcoeff(R^2, n))}
|
|
CROSSREFS
|
Cf. A193540, A193541, A193542, A193543, A193544.
Sequence in context: A218881 A169772 A193542 * A336399 A086260 A124505
Adjacent sequences: A193542 A193543 A193544 * A193546 A193547 A193548
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Paul D. Hanna, Jul 29 2011
|
|
STATUS
|
approved
|
|
|
|