OFFSET
0,3
COMMENTS
L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429...
Compare the definition with that of the dual sequence A193542.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.
FORMULA
a(n) = -A193542(n) for n>=1.
EXAMPLE
E.g.f.: A(x) = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...+ a(n)*x^n/n! +...
which equals the square of the e.g.f. B(x) of A193544:
B(x) = 1 - x^2/2! - 3*x^4/4! + 27*x^6/6! + 441*x^8/8! - 11529*x^10/10! - 442827*x^12/12! +...
PROG
(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1, cosh(2*Pi*m*x/L +x*O(x^n))/cosh(m*Pi)));
round(n!*polcoeff(R^2, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 29 2011
STATUS
approved