login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193542 E.g.f.: 2*L^2/(Pi^2*(1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi) )^2) where L = Lemniscate constant. 5
1, 0, 2, 0, 0, 0, -144, 0, 0, 0, 96768, 0, 0, 0, -268240896, 0, 0, 0, 2111592333312, 0, 0, 0, -37975288540299264, 0, 0, 0, 1353569484565546795008, 0, 0, 0, -86498911610371173437669376, 0, 0, 0, 9198407234012051081051108278272, 0, 0, 0, -1536583522302562247445395779495133184 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429...

Compare the definition with that of the dual sequence A193545.

LINKS

Table of n, a(n) for n=0..38.

Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.

FORMULA

a(n) = -A193545(n) for n>=1.

E.g.f.: dn(x, -1)^2 where dn() is a Jacobi elliptic function. - Michael Somos, Jun 17 2016

EXAMPLE

E.g.f.: A(x) = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...+ a(n)*x^n/n! +...

which equals the square of the e.g.f. B(x) of A193541:

B(x) = 1 + x^2/2! - 3*x^4/4! - 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! - 442827*x^12/12! +...

MATHEMATICA

a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiDN[ x, -1]^2, {x, 0, n}]]; (* Michael Somos, Jun 17 2016 *)

PROG

(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);

R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1, cos(2*Pi*m*x/L +x*O(x^n))/cosh(m*Pi)));

round(n!*polcoeff(R^2, n))}

CROSSREFS

Cf. A193540, A193541, A193543, A193544, A193545.

Sequence in context: A057383 A218881 A169772 * A193545 A336399 A086260

Adjacent sequences: A193539 A193540 A193541 * A193543 A193544 A193545

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jul 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 22:19 EDT 2023. Contains 361716 sequences. (Running on oeis4.)