|
|
A193542
|
|
E.g.f.: 2*L^2/(Pi^2*(1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi) )^2) where L = Lemniscate constant.
|
|
5
|
|
|
1, 0, 2, 0, 0, 0, -144, 0, 0, 0, 96768, 0, 0, 0, -268240896, 0, 0, 0, 2111592333312, 0, 0, 0, -37975288540299264, 0, 0, 0, 1353569484565546795008, 0, 0, 0, -86498911610371173437669376, 0, 0, 0, 9198407234012051081051108278272, 0, 0, 0, -1536583522302562247445395779495133184
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429...
Compare the definition with that of the dual sequence A193545.
|
|
LINKS
|
Table of n, a(n) for n=0..38.
Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.
|
|
FORMULA
|
a(n) = -A193545(n) for n>=1.
E.g.f.: dn(x, -1)^2 where dn() is a Jacobi elliptic function. - Michael Somos, Jun 17 2016
|
|
EXAMPLE
|
E.g.f.: A(x) = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...+ a(n)*x^n/n! +...
which equals the square of the e.g.f. B(x) of A193541:
B(x) = 1 + x^2/2! - 3*x^4/4! - 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! - 442827*x^12/12! +...
|
|
MATHEMATICA
|
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiDN[ x, -1]^2, {x, 0, n}]]; (* Michael Somos, Jun 17 2016 *)
|
|
PROG
|
(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);
R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1, cos(2*Pi*m*x/L +x*O(x^n))/cosh(m*Pi)));
round(n!*polcoeff(R^2, n))}
|
|
CROSSREFS
|
Cf. A193540, A193541, A193543, A193544, A193545.
Sequence in context: A057383 A218881 A169772 * A193545 A336399 A086260
Adjacent sequences: A193539 A193540 A193541 * A193543 A193544 A193545
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Paul D. Hanna, Jul 29 2011
|
|
STATUS
|
approved
|
|
|
|