login
A191972
The numerators of T(n, n+1) with T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0.
1
1, -1, 1, -4, 4, -16, 3056, -1856, 181312, -35853056, 1670556928, -39832634368, 545273832448, -19385421824, 53026545299456, -2753673793480966144, 68423881271489019904, -22654998127210332160
OFFSET
0,4
COMMENTS
For the denominators of T(n, n+1) see A190339, where detailed information can be found.
FORMULA
T(n, n+1) = T(n, n)/2.
a(n+2) = (-1)^n*A181130(n+2)/2.
EXAMPLE
T(n,n+1) = [1/2, -1/6, 1/15 , -4/105, 4/105, -16/231, 3056/15015, -1856/2145, 181312/36465, ...]
MAPLE
nmax:=20: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0, m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n, m):=T(n-1, m+1)-T(n-1, m) od: od: for n from 0 to nmax do seq(T(n, m), m=0..mmax) od: seq(numer(T(n, n+1)), n=0..nmax-1); # Johannes W. Meijer, Jun 30 2011
MATHEMATICA
nmax = 17; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax+1}]; dd = Table[Differences[bb, n], {n, 1, nmax }]; a[0] = 1; a[n_] := dd[[n, n+2]] // Numerator; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 02 2012 *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Paul Curtz, Jun 20 2011
EXTENSIONS
Thanks to R. J. Mathar by Paul Curtz, Jun 20 2011
Edited by Johannes W. Meijer, Jun 30 2011
STATUS
approved