OFFSET
1,2
COMMENTS
a(n) is a factor of any exponent k > 0 such that 1^k + 2^k + ... + p^k == 1 (mod p), where p = A054377(n).
LINKS
J. Sondow and K. MacMillan, Reducing the Erdős-Moser equation 1^n + 2^n + ... + k^n = (k+1)^n modulo k and k^2, Integers 11 (2011), #A34.
FORMULA
a(n) = lcm(p-1 : prime p | A054377(n)).
EXAMPLE
A054377(3) = 42 = 2*3*7, so a(3) = lcm(2-1, 3-1, 7-1) = lcm(1,2,6) = 6.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Kieren MacMillan, Jun 20 2011
STATUS
approved