login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190996
Fibonacci sequence beginning 10, 7.
1
10, 7, 17, 24, 41, 65, 106, 171, 277, 448, 725, 1173, 1898, 3071, 4969, 8040, 13009, 21049, 34058, 55107, 89165, 144272, 233437, 377709, 611146, 988855, 1600001, 2588856, 4188857, 6777713, 10966570, 17744283, 28710853, 46455136, 75165989, 121621125
OFFSET
0,1
COMMENTS
For n >= 5, the number a(n-3) is the dimension of a commutative Hecke algebra of affine type D_n with independent parameters. See Theorem 1.4, Corollary 1.5, and the table on page 524 in the link "Hecke algebras with independent parameters". - Jia Huang, Jan 20 2019
From Greg Dresden and Yiming Wu, Sep 10 2023: (Start)
For n >= 3, a(n) is the number of ways to tile this shape of length n+2 with squares and dominos:
_ _
_|_|___________________|_|_
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
|_| |_|. (End)
For n >= 3, a(n) is the number of edge covers of the kayak paddle graphs KP(3,3,n-3), where we interpret KP(3,3,0) as two C_3's with one common vertex. - Feryal Alayont, Sep 28 2024
LINKS
Jia Huang, Hecke algebras with independent parameters, arXiv preprint arXiv:1405.1636 [math.RT], 2014; Journal of Algebraic Combinatorics 43 (2016) 521-551.
Eric Weisstein's World of Mathematics, Kayak Paddle Graph.
FORMULA
a(n) = (5 + 2*sqrt(5)/5)*((1 + sqrt(5))/2)^n + (5 - 2*sqrt(5)/5)*((1 - sqrt(5))/2)^n. - Antonio Alberto Olivares, Jun 07 2011
a(n) = 7*Fibonacci(n) + 10*Fibonacci(n-1). - Charles R Greathouse IV, Jun 08 2011
G.f.: (10-3*x)/(1-x-x^2). - Colin Barker, Jan 11 2012
a(n) = 4*Fibonacci(n+1) + 3*LucasL(n). - G. C. Greubel, Oct 26 2022
a(n) = A000285(n)+3*A000285(n-1). - Feryal Alayont, Sep 28 2024
MAPLE
seq(coeff(series((10-3*x)/(1-x-x^2), x, n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Jan 22 2019
MATHEMATICA
LinearRecurrence[{1, 1}, {10, 7}, 100]
PROG
(PARI) a(n)=7*fibonacci(n)+10*fibonacci(n-1) \\ Charles R Greathouse IV, Jun 08 2011
(Magma) [n le 2 select 13-3*n else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
(SageMath) [7*fibonacci(n+1) +3*fibonacci(n-1) for n in range(51)] # G. C. Greubel, Oct 26 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved