login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci sequence beginning 10, 7.
1

%I #67 Oct 23 2024 01:26:02

%S 10,7,17,24,41,65,106,171,277,448,725,1173,1898,3071,4969,8040,13009,

%T 21049,34058,55107,89165,144272,233437,377709,611146,988855,1600001,

%U 2588856,4188857,6777713,10966570,17744283,28710853,46455136,75165989,121621125

%N Fibonacci sequence beginning 10, 7.

%C For n >= 5, the number a(n-3) is the dimension of a commutative Hecke algebra of affine type D_n with independent parameters. See Theorem 1.4, Corollary 1.5, and the table on page 524 in the link "Hecke algebras with independent parameters". - _Jia Huang_, Jan 20 2019

%C From _Greg Dresden_ and Yiming Wu, Sep 10 2023: (Start)

%C For n >= 3, a(n) is the number of ways to tile this shape of length n+2 with squares and dominos:

%C _ _

%C _|_|___________________|_|_

%C |_|_|_|_|_|_|_|_|_|_|_|_|_|_|

%C |_| |_|. (End)

%C For n >= 3, a(n) is the number of edge covers of the kayak paddle graphs KP(3,3,n-3), where we interpret KP(3,3,0) as two C_3's with one common vertex. - _Feryal Alayont_, Sep 28 2024

%H Vincenzo Librandi, <a href="/A190996/b190996.txt">Table of n, a(n) for n = 0..1000</a>

%H Jia Huang, <a href="https://arxiv.org/abs/1405.1636">Hecke algebras with independent parameters</a>, arXiv preprint arXiv:1405.1636 [math.RT], 2014; Journal of Algebraic Combinatorics 43 (2016) 521-551.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KayakPaddleGraph.html">Kayak Paddle Graph</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).

%F a(n) = (5 + 2*sqrt(5)/5)*((1 + sqrt(5))/2)^n + (5 - 2*sqrt(5)/5)*((1 - sqrt(5))/2)^n. - _Antonio Alberto Olivares_, Jun 07 2011

%F a(n) = 7*Fibonacci(n) + 10*Fibonacci(n-1). - _Charles R Greathouse IV_, Jun 08 2011

%F G.f.: (10-3*x)/(1-x-x^2). - _Colin Barker_, Jan 11 2012

%F a(n) = 4*Fibonacci(n+1) + 3*LucasL(n). - _G. C. Greubel_, Oct 26 2022

%F a(n) = A000285(n)+3*A000285(n-1). - _Feryal Alayont_, Sep 28 2024

%p seq(coeff(series((10-3*x)/(1-x-x^2),x,n+1), x, n), n = 0 .. 40); # _Muniru A Asiru_, Jan 22 2019

%t LinearRecurrence[{1, 1}, {10, 7}, 100]

%o (PARI) a(n)=7*fibonacci(n)+10*fibonacci(n-1) \\ _Charles R Greathouse IV_, Jun 08 2011

%o (Magma) [n le 2 select 13-3*n else Self(n-1)+Self(n-2): n in [1..50]]; // _Vincenzo Librandi_, Feb 15 2012

%o (SageMath) [7*fibonacci(n+1) +3*fibonacci(n-1) for n in range(51)] # _G. C. Greubel_, Oct 26 2022

%Y Cf. A000032, A000045, A190994, A190995.

%K nonn,easy

%O 0,1

%A _Vladimir Joseph Stephan Orlovsky_, Jun 07 2011