login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190995
Fibonacci sequence beginning 9, 7.
4
9, 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, 1118, 1809, 2927, 4736, 7663, 12399, 20062, 32461, 52523, 84984, 137507, 222491, 359998, 582489, 942487, 1524976, 2467463, 3992439, 6459902, 10452341, 16912243, 27364584, 44276827, 71641411, 115918238, 187559649
OFFSET
0,1
COMMENTS
From Wajdi Maaloul, Jun 20 2022: (Start)
For n>0, 2*a(n) is the number of ways to tile this figure below with squares and dominoes (a strip of length n+1 that begins with a length 3 vertical strip and length 4 one).
_
_|_|
|_|_|
|_|_|_______ _
|_|_|_|_|_|_|...|_|
(End)
FORMULA
a(n) = ((9+sqrt(5))/2)*((1+sqrt(5))/2)^n + ((9-sqrt(5))/2)*((1-sqrt(5))/2)^n. - Antonio Alberto Olivares
G.f.: (9-2*x)/(1-x-x^2). - Colin Barker, Jan 11 2012
a(n) = 7*Fibonacci(n) + 9*Fibonacci(n-1) = 7*Fibonacci(n+1) + 2*Fibonacci(n-1) = 7*Lucas(n) - 5*Fibonacci(n-1) for n>0. - Wajdi Maaloul, Jun 20 2022
MAPLE
a:= n-> (<<0|1>, <1|1>>^n. <<9, 7>>)[1, 1]:
seq(a(n), n=0..36); # Alois P. Heinz, Oct 26 2022
MATHEMATICA
LinearRecurrence[{1, 1}, {9, 7}, 100]
PROG
(PARI) a(n)=7*fibonacci(n)+9*fibonacci(n-1) \\ Charles R Greathouse IV, Jun 08 2011
(Magma) [n le 2 select 11-2*n else Self(n-1)+Self(n-2): n in [1..50]]; \\ Vincenzo Librandi, Feb 15 2012
(SageMath) [7*fibonacci(n) + 9*fibonacci(n-1) for n in range(51)] # G. C. Greubel, Oct 26 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved