login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci sequence beginning 9, 7.
4

%I #46 Oct 26 2022 20:00:22

%S 9,7,16,23,39,62,101,163,264,427,691,1118,1809,2927,4736,7663,12399,

%T 20062,32461,52523,84984,137507,222491,359998,582489,942487,1524976,

%U 2467463,3992439,6459902,10452341,16912243,27364584,44276827,71641411,115918238,187559649

%N Fibonacci sequence beginning 9, 7.

%C From _Wajdi Maaloul_, Jun 20 2022: (Start)

%C For n>0, 2*a(n) is the number of ways to tile this figure below with squares and dominoes (a strip of length n+1 that begins with a length 3 vertical strip and length 4 one).

%C _

%C _|_|

%C |_|_|

%C |_|_|_______ _

%C |_|_|_|_|_|_|...|_|

%C (End)

%H Vincenzo Librandi, <a href="/A190995/b190995.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).

%F a(n) = ((9+sqrt(5))/2)*((1+sqrt(5))/2)^n + ((9-sqrt(5))/2)*((1-sqrt(5))/2)^n. - _Antonio Alberto Olivares_

%F G.f.: (9-2*x)/(1-x-x^2). - _Colin Barker_, Jan 11 2012

%F a(n) = 7*Fibonacci(n) + 9*Fibonacci(n-1) = 7*Fibonacci(n+1) + 2*Fibonacci(n-1) = 7*Lucas(n) - 5*Fibonacci(n-1) for n>0. - _Wajdi Maaloul_, Jun 20 2022

%p a:= n-> (<<0|1>, <1|1>>^n. <<9, 7>>)[1, 1]:

%p seq(a(n), n=0..36); # _Alois P. Heinz_, Oct 26 2022

%t LinearRecurrence[{1, 1}, {9, 7}, 100]

%o (PARI) a(n)=7*fibonacci(n)+9*fibonacci(n-1) \\ _Charles R Greathouse IV_, Jun 08 2011

%o (Magma) [n le 2 select 11-2*n else Self(n-1)+Self(n-2): n in [1..50]]; \\ _Vincenzo Librandi_, Feb 15 2012

%o (SageMath) [7*fibonacci(n) + 9*fibonacci(n-1) for n in range(51)] # _G. C. Greubel_, Oct 26 2022

%Y Cf. A000032, A000045, A190994.

%K nonn,easy

%O 0,1

%A _Vladimir Joseph Stephan Orlovsky_, Jun 07 2011