%I #46 Oct 26 2022 20:00:22
%S 9,7,16,23,39,62,101,163,264,427,691,1118,1809,2927,4736,7663,12399,
%T 20062,32461,52523,84984,137507,222491,359998,582489,942487,1524976,
%U 2467463,3992439,6459902,10452341,16912243,27364584,44276827,71641411,115918238,187559649
%N Fibonacci sequence beginning 9, 7.
%C From _Wajdi Maaloul_, Jun 20 2022: (Start)
%C For n>0, 2*a(n) is the number of ways to tile this figure below with squares and dominoes (a strip of length n+1 that begins with a length 3 vertical strip and length 4 one).
%C _
%C _|_|
%C |_|_|
%C |_|_|_______ _
%C |_|_|_|_|_|_|...|_|
%C (End)
%H Vincenzo Librandi, <a href="/A190995/b190995.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F a(n) = ((9+sqrt(5))/2)*((1+sqrt(5))/2)^n + ((9-sqrt(5))/2)*((1-sqrt(5))/2)^n. - _Antonio Alberto Olivares_
%F G.f.: (9-2*x)/(1-x-x^2). - _Colin Barker_, Jan 11 2012
%F a(n) = 7*Fibonacci(n) + 9*Fibonacci(n-1) = 7*Fibonacci(n+1) + 2*Fibonacci(n-1) = 7*Lucas(n) - 5*Fibonacci(n-1) for n>0. - _Wajdi Maaloul_, Jun 20 2022
%p a:= n-> (<<0|1>, <1|1>>^n. <<9, 7>>)[1, 1]:
%p seq(a(n), n=0..36); # _Alois P. Heinz_, Oct 26 2022
%t LinearRecurrence[{1, 1}, {9, 7}, 100]
%o (PARI) a(n)=7*fibonacci(n)+9*fibonacci(n-1) \\ _Charles R Greathouse IV_, Jun 08 2011
%o (Magma) [n le 2 select 11-2*n else Self(n-1)+Self(n-2): n in [1..50]]; \\ _Vincenzo Librandi_, Feb 15 2012
%o (SageMath) [7*fibonacci(n) + 9*fibonacci(n-1) for n in range(51)] # _G. C. Greubel_, Oct 26 2022
%Y Cf. A000032, A000045, A190994.
%K nonn,easy
%O 0,1
%A _Vladimir Joseph Stephan Orlovsky_, Jun 07 2011