login
A190994
a(n) = a(n-1) + a(n-2), for n>=2, with a(0)=27, a(1)=2.
4
27, 2, 29, 31, 60, 91, 151, 242, 393, 635, 1028, 1663, 2691, 4354, 7045, 11399, 18444, 29843, 48287, 78130, 126417, 204547, 330964, 535511, 866475, 1401986, 2268461, 3670447, 5938908, 9609355, 15548263, 25157618, 40705881, 65863499
OFFSET
0,1
COMMENTS
Fibonacci sequence beginning 27, 2.
FORMULA
G.f.: (27-25*x)/(1-x-x^2). - Harvey P. Dale, Jun 19 2011
a(n) = (27/2)*( ((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n ) + (23/10)*sqrt(5)*( ((1-sqrt(5))/2)^n - ((1+sqrt(5))/2)^n ). - Antonio Alberto Olivares, Jun 19 2011, corrected by Klaus Brockhaus, Jun 20 2011
a(n) = 2*Fibonacci(n) + 27*Fibonacci(n-1). - Charles R Greathouse IV, Jun 20 2011
a(n) = 2*LucasL(n) + 25*Fibonacci(n-1). - G. C. Greubel, Oct 26 2022
MAPLE
a:= n-> (<<0|1>, <1|1>>^n. <<27, 2>>)[1, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, Nov 18 2018
MATHEMATICA
LinearRecurrence[{1, 1}, {27, 2}, 100]
CoefficientList[Series[(25x-27)/(x^2+x-1), {x, 0, 100}], x] (* Harvey P. Dale, Jun 19 2011 *)
PROG
(Magma) [n eq 1 select 27 else n eq 2 select 2 else Self(n-1)+Self(n-2): n in [1..40]]; // Klaus Brockhaus, Jun 20 2011
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-5); S:=[ 27/2*((1/2+1/2*r)^n+(1/2-1/2*r)^n)+23/10*r*((1/2-1/2*r)^n-(1/2+1/2*r)^n): n in [0..39] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jun 20 2011
(Maxima) makelist(coeff(taylor((25*x-27)/(x^2+x-1), x, 0, n), x, n), n, 0, 33); /* Bruno Berselli, Jun 20 2011 */
(PARI) a(n)=27*fibonacci(n-1)+2*fibonacci(n) \\ Charles R Greathouse IV, Jun 20 2011
(SageMath) [2*fibonacci(n+1) + 25*fibonacci(n-1) for n in range(101)] # G. C. Greubel, Oct 26 2022
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
STATUS
approved