OFFSET
1,8
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..5000
V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
Index entries for linear recurrences with constant coefficients, signature (2, 14, -30, -90, 210, 350, -910, -910, 2730, 1638, -6006, -2002, 10010, 1430, -12870, 0, 12870, -1430, -10010, 2002, 6006, -1638, -2730, 910, 910, -350, -210, 90, 30, -14, -2, 1).
FORMULA
a(n) = (1/80640) * (n-6)^2 * (n-4)^2 * (n-2)^2 * n^2 * (2*n^8 - 64*n^7 + 884*n^6 - 7048*n^5 + 37382*n^4 - 147904*n^3 + 468540*n^2 - 1108800*n + 1422225 + (28*n^6 - 840*n^5 + 10906*n^4 - 80640*n^3 + 370468*n^2 - 1034880*n + 1400175) * (-1)^n)
G.f.: 1152x^8*(35x^23 + 21178x^22 + 27889x^21 + 2133348x^20 + 3081175x^19 + 51948910x^18 + 72476645x^17 + 469213640x^16 + 538879520x^15 + 1803221880x^14 + 1580004720x^13 + 3146148264x^12 + 2014875632x^11 + 2544618104x^10 + 1144092320x^9 + 933224520x^8 + 278242005x^7 + 143723790x^6 + 25756935x^5 + 7854820x^4 + 693025x^3 + 104538x^2 + 2579x + 128) / ((1-x)^17*(x+1)^15)
MATHEMATICA
(* Number of ways to place k nonattacking bishops on an n x n toroidal board *)
tbishops[k_, n_]:=If[EvenQ[n], 2^k*k!*Sum[Binomial[n/2, i]^2*Binomial[n/2, k-i]^2/Binomial[k, i], {i, 0, k}], k!*Binomial[n, k]^2];
Table[tbishops[8, n], {n, 1, 20}] (* using k=8 for this sequence *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 27 2011
STATUS
approved