login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189789
Number of ways to place 8 nonattacking bishops on an n x n toroidal board
2
0, 0, 0, 0, 0, 0, 0, 147456, 3265920, 129024000, 1097712000, 12939264000, 66784798080, 436483031040, 1669619952000, 7629571031040, 23828156352000, 85476013572096, 230333593351680, 693478195200000, 1669577821632000
OFFSET
1,8
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 14, -30, -90, 210, 350, -910, -910, 2730, 1638, -6006, -2002, 10010, 1430, -12870, 0, 12870, -1430, -10010, 2002, 6006, -1638, -2730, 910, 910, -350, -210, 90, 30, -14, -2, 1).
FORMULA
a(n) = (1/80640) * (n-6)^2 * (n-4)^2 * (n-2)^2 * n^2 * (2*n^8 - 64*n^7 + 884*n^6 - 7048*n^5 + 37382*n^4 - 147904*n^3 + 468540*n^2 - 1108800*n + 1422225 + (28*n^6 - 840*n^5 + 10906*n^4 - 80640*n^3 + 370468*n^2 - 1034880*n + 1400175) * (-1)^n)
G.f.: 1152x^8*(35x^23 + 21178x^22 + 27889x^21 + 2133348x^20 + 3081175x^19 + 51948910x^18 + 72476645x^17 + 469213640x^16 + 538879520x^15 + 1803221880x^14 + 1580004720x^13 + 3146148264x^12 + 2014875632x^11 + 2544618104x^10 + 1144092320x^9 + 933224520x^8 + 278242005x^7 + 143723790x^6 + 25756935x^5 + 7854820x^4 + 693025x^3 + 104538x^2 + 2579x + 128) / ((1-x)^17*(x+1)^15)
MATHEMATICA
(* Number of ways to place k nonattacking bishops on an n x n toroidal board *)
tbishops[k_, n_]:=If[EvenQ[n], 2^k*k!*Sum[Binomial[n/2, i]^2*Binomial[n/2, k-i]^2/Binomial[k, i], {i, 0, k}], k!*Binomial[n, k]^2];
Table[tbishops[8, n], {n, 1, 20}] (* using k=8 for this sequence *)
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 27 2011
STATUS
approved