|
|
A189791
|
|
Number of ways to place n nonattacking bishops on an 2n x 2n toroidal board.
|
|
3
|
|
|
4, 80, 2688, 132864, 8647680, 699678720, 67711795200, 7629571031040, 981168437329920, 141817953779712000, 22760391875493888000, 4016046336733347840000, 772743693378451931136000, 161027573368536472485888000, 36127883615009765477842944000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..200
V. Kotesovec, Number of ways of placing non-attacking queens, kings, bishops and knights (in English and Czech)
|
|
FORMULA
|
a(n)=2^n*n!*Sum[Binomial[n,i]^3,{i,0,n}].
Asymptotic: a(n) ~ 2^(4n+1)*(n-1)!/Pi/sqrt(3) ~ 2^(4n+1)*n^n/exp(n)*sqrt(2/(3*Pi*n)).
Recurrence: a(n) = ((14*n^2-14*n+4)*a(n-1) + 32*(n-1)^3*a(n-2))/n.
|
|
MATHEMATICA
|
Table[2^n*n!*Sum[Binomial[n, i]^3, {i, 0, n}], {n, 1, 20}]
|
|
CROSSREFS
|
Cf. A189790, A002465, A000172.
Sequence in context: A132584 A277074 A012127 * A057875 A187543 A268734
Adjacent sequences: A189788 A189789 A189790 * A189792 A189793 A189794
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Apr 27 2011
|
|
STATUS
|
approved
|
|
|
|