login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A277074
Number of n-node labeled graphs with three endpoints.
4
0, 0, 0, 4, 80, 1860, 64680, 3666600, 354093264, 59372032440, 17572209206640, 9347625940951980, 9099961952914672840, 16480899322963497105684, 56311549004017312945310280, 367105988116570172056739960080
OFFSET
1,4
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).
LINKS
Marko R. Riedel, Geoffrey Critzer, Math.Stackexchange.com, Proof of the closed form of the e.g.f. by combinatorial species.
FORMULA
E.g.f.: (1/6)*(z^4/(1-z)^3)*A(z) + (1/2)*(z^4/(1-z)^2)*(A'(z)-A(z)) + (1/6)*(z^6/(1-z)^3)*(A'''(z)-3*A''(z)+3*A'(z)-A(z)) + (1/2)*(z^5/(1-z)^4)*(A''(z)-2*A'(z)+A(z)) + (1/6)*(z^4/(1-z)^4)*(A'(z)-A(z)) + (1/2)*(z^5/(1-z)^5)*(A'(z)-A(z)) where A(z) = exp(1/2*z^2) * Sum_{n>=0} 2^binomial(n, 2)*(z/exp(z))^n/n!.
MAPLE
MX := 16:
XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n, 2)/n!, n=0..MX+5):
K1 := 1/6*z^4/(1-z)^3*XGF:
K2 := 1/2*z^4/(1-z)^2*(diff(XGF, z)-XGF):
K3 := 1/6*z^6/(1-z)^3*(diff(XGF, z$3)-3*diff(XGF, z$2)+3*diff(XGF, z)-XGF):
K4 := 1/2*z^5/(1-z)^4*(diff(XGF, z$2)-2*diff(XGF, z)+XGF):
K5 := 1/6*z^4/(1-z)^4*(diff(XGF, z)-XGF):
K6 := 1/2*z^5/(1-z)^5*(diff(XGF, z)-XGF):
XS := series(K1+K2+K3+K4+K5+K6, z=0, MX+1):
seq(n!*coeff(XS, z, n), n=1..MX);
MATHEMATICA
m = 16;
A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m+1}];
egf = (1/6)*(z^4/(1-z)^3)*A[z] + (1/2)*(z^4/(1-z)^2)*(A'[z] - A[z]) + (1/6)*(z^6/(1-z)^3)*(A'''[z] - 3*A''[z] + 3*A'[z] - A[z]) + (1/2)*(z^5/(1 - z)^4)*(A''[z] - 2*A'[z] + A[z]) + (1/6)*(z^4/(1-z)^4)*(A'[z] - A[z]) + (1/2)*(z^5/(1-z)^5)*(A'[z] - A[z]); s = egf + O[z]^(m+1);
a[n_] := n!*SeriesCoefficient[s, n];
Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
CROSSREFS
Column k=3 of A327369.
Sequence in context: A114488 A055787 A132584 * A012127 A189791 A057875
KEYWORD
nonn
AUTHOR
Marko Riedel, Sep 27 2016
STATUS
approved