login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055787 a(n) = 2^(4*n-1) - 2^(2*n-1)*binomial(2*n,n). 2
0, 4, 80, 1408, 23808, 395264, 6496256, 106102784, 1725759488, 27987017728, 452890460160, 7316694892544, 118053383700480, 1902813588226048, 30644438111879168, 493182667873845248, 7932561728196313088, 127528427796392050688, 2049363966872621416448 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of 4-ary words of length 2n in which the combined count of 0's and 1's is greater than n. - David Scambler, Aug 13 2012

REFERENCES

The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1982, (3.98), page 33.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..825

H. W. Gould, ed. J. Quaintance, Combinatorial Identities, May 2010, (7.6) p. 35.

FORMULA

a(n) + A045952(n) = 2^(4n). - David Scambler, Aug 13 2012

a(n) = Sum_{k=0..n-1} binomial(4*k+2, 2*k+1) * binomial(4*n-4*k-2, 2*n-2*k-1). (LHS of Gould's identity, corrected).

a(n) = 2^(4*n-1)*(1-(Gamma(n+1/2))/(sqrt(Pi)*Gamma(n+1))). - Alexander R. Povolotsky, Aug 13 2012

a(n) = Sum_{k=0..n-1}(2^(2*n) * C(2*n, k)). - David Scambler, Aug 13 2012

a(n+2) = (8*(4*n+5)*a(n+1))/(n+2) - (128*(2*n+1)*a(n))/(n+2). - Alexander R. Povolotsky, Aug 14 2012

G.f.: (1 - sqrt(1-16*x))/(2*(1-16*x)). - G. C. Greubel, Jan 25 2020

MAPLE

seq( 2^(4*n-1) - 2^(2*n-1)*binomial(2*n, n), n=0..20); # G. C. Greubel, Jan 25 2020

MATHEMATICA

Table[2^(4*n-1) - 2^(2*n-1)*Binomial[2*n, n], {n, 0, 20}] (* G. C. Greubel, Feb 16 2017 *)

PROG

(PARI) vector(21, n, my(m=n-1); 2^(4*m-1) -2^(2*m-1)*binomial(2*m, m) ) \\ G. C. Greubel, Feb 16 2017

(MAGMA) [2^(4*n-1) - 2^(2*n-1)*Binomial(2*n, n): n in [0..20]]; // G. C. Greubel, Jan 25 2020

(Sage) [2^(4*n-1) - 2^(2*n-1)*binomial(2*n, n) for n in (0..20)] # G. C. Greubel, Jan 25 2020

(GAP) List([0..20], n-> 2^(4*n-1) - 2^(2*n-1)*Binomial(2*n, n)); # G. C. Greubel, Jan 25 2020

CROSSREFS

Cf. A045952.

Sequence in context: A192834 A054322 A114488 * A132584 A277074 A012127

Adjacent sequences:  A055784 A055785 A055786 * A055788 A055789 A055790

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jul 15 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 00:21 EST 2021. Contains 349530 sequences. (Running on oeis4.)