login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055787 a(n) = 2^(4*n-1) - 2^(2*n-1)*C(2*n,n). 2
0, 4, 80, 1408, 23808, 395264, 6496256, 106102784, 1725759488, 27987017728, 452890460160, 7316694892544, 118053383700480, 1902813588226048, 30644438111879168, 493182667873845248, 7932561728196313088, 127528427796392050688, 2049363966872621416448 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of 4-ary words of length 2n in which the combined count of 0's and 1's is greater than n. - David Scambler, Aug 13 2012

REFERENCES

The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1982, (3.98), page 33.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..825

H. W. Gould, ed. J. Quaintance, Combinatorial Identities, May 2010, (7.6) p. 35.

FORMULA

a(n) + A045952(n) = 2^(4n). - David Scambler, Aug 13 2012

a(n) = Sum_{k=0..n-1}(C(4*k+2, 2*k+1) * C(4*n-4*k-2, 2*n-2*k-1)). (LHS of Gould's identity, corrected).

a(n) = 2^(4*n-1)*(1-(Gamma(n+1/2))/(sqrt(Pi)*Gamma(n+1))). - Alexander R. Povolotsky, Aug 13 2012

a(n) = Sum_{k=0..n-1}(2^(2*n) * C(2*n, k)). - David Scambler, Aug 13 2012

a(n+2) = (8*(4*n+5)*a(n+1))/(n+2)-(128*(2*n+1)*a(n))/(n+2). - Alexander R. Povolotsky, Aug 14 2012

MATHEMATICA

Table[2^(4*n - 1) - 2^(2*n - 1) Binomial[2*n, n], {n, 0, 50}] (* G. C. Greubel, Feb 16 2017 *)

PROG

(PARI) for(n=0, 25, print1(2^(4*n - 1) - 2^(2*n - 1)*binomial(2*n, n), ", ")) \\ G. C. Greubel, Feb 16 2017

CROSSREFS

Cf. A045952.

Sequence in context: A192834 A054322 A114488 * A132584 A277074 A012127

Adjacent sequences:  A055784 A055785 A055786 * A055788 A055789 A055790

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jul 15 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:36 EST 2020. Contains 331172 sequences. (Running on oeis4.)