login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055789
a(n) = binomial(n, round(sqrt(n))).
1
1, 1, 2, 3, 6, 10, 15, 35, 56, 84, 120, 165, 220, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 736281, 906192, 1107568, 1344904, 1623160, 1947792, 2324784, 2760681
OFFSET
0,3
LINKS
FORMULA
a(n^2) = A014062(n).
EXAMPLE
a(9) = C(9,3) = 9!/(3!*6!) = 84
MAPLE
seq( binomial(n, round(sqrt(n))), n=0..40); # G. C. Greubel, Jan 25 2020
MATHEMATICA
Table[Binomial[n, Round[Sqrt[n]]], {n, 0, 40}] (* G. C. Greubel, Jan 25 2020 *)
PROG
(PARI) vector(40, n, binomial(n, round(sqrt(n))) ) \\ G. C. Greubel, Jan 25 2020
(Magma) [Binomial(n, Round(Sqrt(n))): n in [0..40]]; // G. C. Greubel, Jan 25 2020
(Sage) [binomial(n, round(sqrt(n))) for n in (0..40)] # G. C. Greubel, Jan 25 2020
(Python)
from math import comb, isqrt
def A055789(n): return comb(n, (m:=isqrt(n))+ int((n-m*(m+1)<<2)>=1)) # Chai Wah Wu, Jul 29 2022
CROSSREFS
Sequence in context: A077011 A246868 A370819 * A238891 A048681 A375972
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jul 13 2000
STATUS
approved