login
A004670
Theta series of extremal even unimodular lattice in dimension 32.
1
1, 0, 146880, 64757760, 4844836800, 137695887360, 2121555283200, 21421110804480, 158757684004800, 928986331545600, 4512164186816640, 18847854517248000, 69519016873985280, 230952108679004160
OFFSET
0,3
COMMENTS
There are at least 15 such lattices, one of which is the Barnes-Wall lattice BW_32.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 195.
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
a(n) = A282012(n) - 960*A027364(n-1) for n > 0. - Andy Huchala, May 01 2021
EXAMPLE
G.f.: 1 + 146880*q^2 + 64757760*q^3 + 4844836800*q^4 + ...
PROG
(Sage)
e4 = eisenstein_series_qexp(4, 20, normalization = "integral");
delta = CuspForms(1, 12).0.q_expansion(20);
(e4^4 - 960*delta*e4).list()[:20] # Andy Huchala, May 01 2021
CROSSREFS
Sequence in context: A345753 A110084 A224587 * A111044 A189789 A204105
KEYWORD
nonn
STATUS
approved