

A110084


Numbers n with even length such that sigma(n)=d_1^d_2*d_3^d_4 *...*d_(k1)^d_k where d_1 d_2 ... d_k is the decimal expansion of n.


5



146710, 334552, 12931485, 15734393, 16839254, 20499191, 28661422, 38722820, 43681330, 44463034, 45509442, 55188392, 55938216, 92505149, 1054662422, 1060804965, 1068721252, 1094834272, 1167528360, 1341465139, 1436725284, 1452198772, 1452847236, 1540709585, 1594291529, 1596602643, 1672853710
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

45509442 is in the sequence because sigma(55938216)=5^5*9^3*8^2*1^6.


MATHEMATICA

Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#1]] == 0 &] == {} && DivisorSigma[1, n]== Product[h[[2j1]]^h[[2j]], {j, k/2}], Print[n]], {n, 10^8}]


CROSSREFS



KEYWORD

base,nonn


AUTHOR



EXTENSIONS



STATUS

approved



