OFFSET
0,2
COMMENTS
Aliquot divisors of 1089. - Omar E. Pol, Jun 10 2014
The above comment refers to the first 8 terms only. The next term would contain a digit 18, commonly coded as I, if A, B, ... are used for digits > 9. But this does not mean that the sequence is finite. Many other encodings of digits > 9 are conceivable (e.g., using 000, 100, 110, ..., 250 for digits 0, 10, 11, ..., 25). - M. F. Hasler, Jun 22 2018
MATHEMATICA
Select[Divisors[1089], # < 1089 &] (* Wesley Ivan Hurt, Jun 13 2014 *)
PROG
(PARI) fordiv(1089, d, (d<1089) && print1(d, ", ")) \\ Michel Marcus, Jun 14 2014
(PARI) divisors(1089)[^-1] \\ M. F. Hasler, Jun 22 2018
(PARI) apply( A004668(n, b=26, m=3)=fromdigits(digits(m^n, b)), [0..8]) \\ This implements one possible continuation of the sequence beyond n = 7: write digits in decimal and carry over (so 363*3 = 9I9[26] -> 9*100 + 18*10 + 9 = 1089). - M. F. Hasler, Jun 22 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 11 1996
STATUS
approved