login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226477
Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.
2
1, 3, 9, 11, 33, 99, 27, 37, 111, 333, 999, 101, 303, 909, 1111, 3333, 9999, 41, 123, 271, 369, 813, 2439, 11111, 33333, 99999, 7, 13, 21, 39, 63, 77, 91, 117, 143, 189, 231, 259, 273, 297, 351, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2079, 2331, 2457, 2849, 3003, 3367, 3663, 3861, 4329, 5291, 6993, 8547, 9009, 10101, 10989, 12987, 15873, 25641, 27027, 30303, 37037, 47619, 76923, 90909, 111111, 142857, 333333, 999999
OFFSET
1,2
COMMENTS
The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
The number of elements in row k is A059892(k).
LINKS
EXAMPLE
The table T(k,m), m = 1..A059892(k), begins
1, 3, 9;
11, 33, 99;
27, 37, 111, 333, 999;
etc.
MAPLE
a:=[1, 3, 9]: S:={1, 3, 9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a), op(T minus S)]: S:=S union T; od: a;
PROG
(PARI) Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10, x))==n), v) \\ Jianing Song, Jun 15 2021
KEYWORD
nonn,base,tabf,easy
AUTHOR
Martin Renner, Jun 08 2013
STATUS
approved