login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A226477
Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.
2
1, 3, 9, 11, 33, 99, 27, 37, 111, 333, 999, 101, 303, 909, 1111, 3333, 9999, 41, 123, 271, 369, 813, 2439, 11111, 33333, 99999, 7, 13, 21, 39, 63, 77, 91, 117, 143, 189, 231, 259, 273, 297, 351, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2079, 2331, 2457, 2849, 3003, 3367, 3663, 3861, 4329, 5291, 6993, 8547, 9009, 10101, 10989, 12987, 15873, 25641, 27027, 30303, 37037, 47619, 76923, 90909, 111111, 142857, 333333, 999999
OFFSET
1,2
COMMENTS
The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
The number of elements in row k is A059892(k).
LINKS
EXAMPLE
The table T(k,m), m = 1..A059892(k), begins
1, 3, 9;
11, 33, 99;
27, 37, 111, 333, 999;
etc.
MAPLE
a:=[1, 3, 9]: S:={1, 3, 9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a), op(T minus S)]: S:=S union T; od: a;
PROG
(PARI) Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10, x))==n), v) \\ Jianing Song, Jun 15 2021
KEYWORD
nonn,base,tabf,easy
AUTHOR
Martin Renner, Jun 08 2013
STATUS
approved