Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 15 2021 02:02:20
%S 1,3,9,11,33,99,27,37,111,333,999,101,303,909,1111,3333,9999,41,123,
%T 271,369,813,2439,11111,33333,99999,7,13,21,39,63,77,91,117,143,189,
%U 231,259,273,297,351,407,429,481,693,777,819,1001,1221,1287,1443,2079,2331,2457,2849,3003,3367,3663,3861,4329,5291,6993,8547,9009,10101,10989,12987,15873,25641,27027,30303,37037,47619,76923,90909,111111,142857,333333,999999
%N Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.
%C The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
%C The number of elements in row k is A059892(k).
%H Jianing Song, <a href="/A226477/b226477.txt">Rows n = 1..32, flattened</a>
%e The table T(k,m), m = 1..A059892(k), begins
%e 1, 3, 9;
%e 11, 33, 99;
%e 27, 37, 111, 333, 999;
%e etc.
%p a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a;
%o (PARI) Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ _Jianing Song_, Jun 15 2021
%Y Cf. A018282, A018766, A027894, A027893, A027892, A027891, A027890, A027889, A027895, A027896, A027897, A109933, A106305, A111117, A111211, A113116, A113522 (Divisors of 10^k - 1, k = 2..18), A059892, A084680.
%K nonn,base,tabf,easy
%O 1,2
%A _Martin Renner_, Jun 08 2013