login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187822
Smallest k such that the partial sums of the divisors of k (taken in increasing order) contain exactly n primes.
3
1, 2, 4, 16, 64, 140, 440, 700, 1650, 2304, 5180, 3960, 3900, 14400, 15600, 43560, 39600, 57600, 56700, 81900, 25200, 112896, 100100, 177840, 198000, 411840, 222768, 226800, 637560, 752400, 556920, 907200, 409500, 565488, 1306800, 1984500, 1884960
OFFSET
0,2
COMMENTS
It appears that a(n) is even for n > 0 and nonsquarefree for n > 1. We also conjecture that there is an infinite subsequence of squares 1, 4, 16, 64, 2304, 14400, 57600, 112896, ....
The corresponding triangle in which row n gives the n primes starts with:
k = 1 -> no prime
k = 2 -> 3;
k = 4 -> 3, 7;
k = 16 -> 3, 7, 31;
k = 64 -> 3, 7, 31, 127;
k = 140 -> 3, 7, 19, 29, 43;
k = 440 -> 3, 7, 41, 61, 83, 167; ...
LINKS
EXAMPLE
a(4) = 64 because the partial sums of the divisors {1, 2, 4, 8, 16, 32, 64} that generate 4 prime numbers are:
1 + 2 = 3;
1 + 2 + 4 = 7;
1 + 2 + 4 + 8 + 16 = 31;
1 + 2 + 4 + 8 + 16 + 32 + 64 = 127.
MAPLE
read("transforms") :
A187822 := proc(n)
local k, ps, pct ;
if n = 0 then
return 1;
end if;
for k from 1 do
ps := sort(convert(numtheory[divisors](k), list)) ;
ps := PSUM(ps) ;
pct := 0 ;
for p in ps do
if isprime(p) then
pct := pct+1 ;
end if;
end do:
if pct = n then
return k ;
end if;
end do:
end proc: # R. J. Mathar, Jan 18 2013
MATHEMATICA
a[n_] := Catch[ For[k = 1, True, k++, cnt = Count[ Accumulate[ Divisors[k]], _?PrimeQ]; If[cnt == n, Print[{n, k}]; Throw[k]]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 27 2012 *)
PROG
(PARI) A187822(n)={n<1||for(k=1, 9e9, numdiv(k)<n&next; my(t=divisors(k), s=1, c); for(i=2, #t, isprime(s+=t[i])&c++==n&return(k)))} \\ M. F. Hasler, Dec 29 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 27 2012
STATUS
approved