login
A187822
Smallest k such that the partial sums of the divisors of k (taken in increasing order) contain exactly n primes.
3
1, 2, 4, 16, 64, 140, 440, 700, 1650, 2304, 5180, 3960, 3900, 14400, 15600, 43560, 39600, 57600, 56700, 81900, 25200, 112896, 100100, 177840, 198000, 411840, 222768, 226800, 637560, 752400, 556920, 907200, 409500, 565488, 1306800, 1984500, 1884960
OFFSET
0,2
COMMENTS
It appears that a(n) is even for n > 0 and nonsquarefree for n > 1. We also conjecture that there is an infinite subsequence of squares 1, 4, 16, 64, 2304, 14400, 57600, 112896, ....
The corresponding triangle in which row n gives the n primes starts with:
k = 1 -> no prime
k = 2 -> 3;
k = 4 -> 3, 7;
k = 16 -> 3, 7, 31;
k = 64 -> 3, 7, 31, 127;
k = 140 -> 3, 7, 19, 29, 43;
k = 440 -> 3, 7, 41, 61, 83, 167; ...
LINKS
EXAMPLE
a(4) = 64 because the partial sums of the divisors {1, 2, 4, 8, 16, 32, 64} that generate 4 prime numbers are:
1 + 2 = 3;
1 + 2 + 4 = 7;
1 + 2 + 4 + 8 + 16 = 31;
1 + 2 + 4 + 8 + 16 + 32 + 64 = 127.
MAPLE
read("transforms") :
A187822 := proc(n)
local k, ps, pct ;
if n = 0 then
return 1;
end if;
for k from 1 do
ps := sort(convert(numtheory[divisors](k), list)) ;
ps := PSUM(ps) ;
pct := 0 ;
for p in ps do
if isprime(p) then
pct := pct+1 ;
end if;
end do:
if pct = n then
return k ;
end if;
end do:
end proc: # R. J. Mathar, Jan 18 2013
MATHEMATICA
a[n_] := Catch[ For[k = 1, True, k++, cnt = Count[ Accumulate[ Divisors[k]], _?PrimeQ]; If[cnt == n, Print[{n, k}]; Throw[k]]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 27 2012 *)
PROG
(PARI) A187822(n)={n<1||for(k=1, 9e9, numdiv(k)<n&next; my(t=divisors(k), s=1, c); for(i=2, #t, isprime(s+=t[i])&c++==n&return(k)))} \\ M. F. Hasler, Dec 29 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 27 2012
STATUS
approved