login
A092585
Numbers n such that sigma(phi(n))-phi(sigma(n)) is nonzero and is divisible by (n-1), that is A065395(n)/(n-1) = (phi(sigma(n))-sigma(phi(n)))/(n-1) is a nonzero integer.
3
2, 4, 16, 64, 151, 449, 3403, 4096, 4267, 9307, 35905, 65536, 247285, 262144, 17625601, 33126625, 399288961, 649232833, 947278081, 1073741824, 2102485441, 4555788385, 5203567081, 6103058177, 7115716609
OFFSET
1,1
EXAMPLE
(sigma(phi(x))-phi(sigma(x)))/(x-1) is -1 if x=2,4,16,64,4096,65536,262144 and is 2 if x=151,449,3403, etc.
MATHEMATICA
f[ x_] := EulerPhi[ DivisorSigma[1, x]] - DivisorSigma[1, EulerPhi[x]]; t = {}; Do[ s = f[n]; If[ s != 0 && Mod[ s, n - 1] == 0, Print[n]; AppendTo[t, n], {n, 2*10^8}]; t
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 01 2004
EXTENSIONS
More terms from Robert G. Wilson v, Mar 03 2004
a(17)-a(25) from Donovan Johnson, Mar 04 2013
STATUS
approved