login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187545 Stirling transform (of the first kind) of the central Lah numbers (A187535). 8
1, 2, 38, 1312, 66408, 4442088, 369791064, 36848702784, 4277191653888, 566809715422464, 84441103242634176, 13970100487593468480, 2541362625439551554880, 504185908064687887996800, 108336183242510523080868480 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(s(n,k)*L(k), k=0..n), where s(n,k) are the (signless) Stirling numbers of the first kind and L(n) are the central Lah numbers.
E.g.f.: 1/2 + 1/Pi*K(-16*log(1-x)), where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
a(n) ~ n! / (2*Pi*n * (1 - exp(-1/16))^n). - Vaclav Kotesovec, Apr 10 2018
MAPLE
lahc := n -> if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! fi;
seq(add(abs(combinat[stirling1](n, k))*lahc(k), k=0..n), n=0..20);
MATHEMATICA
lahc[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Abs[StirlingS1[n, k]]*lahc[k], {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) lahc(n):= if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n!;
makelist(sum(abs(stirling1(n, k))*lahc(k), k, 0, n), n, 0, 12);
CROSSREFS
Sequence in context: A266597 A291821 A187544 * A246484 A288027 A184994
KEYWORD
nonn,easy,nice
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:17 EST 2023. Contains 367717 sequences. (Running on oeis4.)