The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184994 E.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)! is inverse to f(x) = 2*sin(x) - x. 1
 1, 2, 38, 2018, 210422, 36297362, 9356755718, 3369557048258, 1615758952865942, 995259055695876722, 765831994417031276198, 719917951968845731560098, 811830142106561351995390262, 1081642386040230828943441100882, 1680966987441826604383087455198278 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..100 FORMULA a(n) = 2*((2*n)!*Sum_{k=1..(2*n)} binomial(2*n+k,2*n)*Sum_{j=1..k} binomial(k,j)*(Sum_{l=0..(j-1)} (binomial(j,l)*Sum_{i=0..(j-l)/2} binomial(j-l,i)*(l-j+2*i)^(2*n-l+j)*(-1)^(n-i)))/(2*n-l+j)!))))), a(0)=1. a(n) ~ 2^(2*n+1) * n^(2*n) / (3^(1/4) * exp(2*n) * (sqrt(3) - Pi/3)^(2*n+1/2)). - Vaclav Kotesovec, Jan 26 2014 MATHEMATICA Table[(CoefficientList[InverseSeries[Series[-x+2*Sin[x], {x, 0, 31}], x], x]*Range[0, 31]!)[[n]], {n, 2, 30, 2}] (* Vaclav Kotesovec, Jan 26 2014 *) PROG (Maxima) a(n):=if n=0 then 1 else 2*((2*n)!*sum(binomial(2*n+k, 2*n)*sum(binomial(k, j)*(sum((binomial(j, l)*sum(binomial(j-l, i)*(l-j+2*i)^(2*n-l+j)*(-1)^(n-i), i, 0, (j-l)/2))/(2*n-l+j)!, l, 0, j-1)), j, 1, k), k, 1, 2*n)); (PARI) seq(n)={my(p=serlaplace(serreverse(2*sin(x + O(x^(2*n+2))) - x))); vector(n+1, i, polcoef(p, 2*i-1))} \\ Andrew Howroyd, Jan 04 2020 CROSSREFS Sequence in context: A187545 A246484 A288027 * A334554 A348162 A132396 Adjacent sequences:  A184991 A184992 A184993 * A184995 A184996 A184997 KEYWORD nonn AUTHOR Vladimir Kruchinin, Feb 04 2012 EXTENSIONS Terms a(13) and beyond from Andrew Howroyd, Jan 04 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 12:24 EST 2021. Contains 349557 sequences. (Running on oeis4.)