login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184994 E.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)! is inverse to f(x) = 2*sin(x) - x. 1
1, 2, 38, 2018, 210422, 36297362, 9356755718, 3369557048258, 1615758952865942, 995259055695876722, 765831994417031276198, 719917951968845731560098, 811830142106561351995390262, 1081642386040230828943441100882, 1680966987441826604383087455198278 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..100

FORMULA

a(n) = 2*((2*n)!*Sum_{k=1..(2*n)} binomial(2*n+k,2*n)*Sum_{j=1..k} binomial(k,j)*(Sum_{l=0..(j-1)} (binomial(j,l)*Sum_{i=0..(j-l)/2} binomial(j-l,i)*(l-j+2*i)^(2*n-l+j)*(-1)^(n-i)))/(2*n-l+j)!))))), a(0)=1.

a(n) ~ 2^(2*n+1) * n^(2*n) / (3^(1/4) * exp(2*n) * (sqrt(3) - Pi/3)^(2*n+1/2)). - Vaclav Kotesovec, Jan 26 2014

MATHEMATICA

Table[(CoefficientList[InverseSeries[Series[-x+2*Sin[x], {x, 0, 31}], x], x]*Range[0, 31]!)[[n]], {n, 2, 30, 2}] (* Vaclav Kotesovec, Jan 26 2014 *)

PROG

(Maxima) a(n):=if n=0 then 1 else 2*((2*n)!*sum(binomial(2*n+k, 2*n)*sum(binomial(k, j)*(sum((binomial(j, l)*sum(binomial(j-l, i)*(l-j+2*i)^(2*n-l+j)*(-1)^(n-i), i, 0, (j-l)/2))/(2*n-l+j)!, l, 0, j-1)), j, 1, k), k, 1, 2*n));

(PARI) seq(n)={my(p=serlaplace(serreverse(2*sin(x + O(x^(2*n+2))) - x))); vector(n+1, i, polcoef(p, 2*i-1))} \\ Andrew Howroyd, Jan 04 2020

CROSSREFS

Sequence in context: A187545 A246484 A288027 * A334554 A348162 A132396

Adjacent sequences:  A184991 A184992 A184993 * A184995 A184996 A184997

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Feb 04 2012

EXTENSIONS

Terms a(13) and beyond from Andrew Howroyd, Jan 04 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:24 EST 2021. Contains 349557 sequences. (Running on oeis4.)