|
|
A187544
|
|
Stirling transform (of the second kind) of the central Lah numbers (A187535).
|
|
8
|
|
|
1, 2, 38, 1310, 66254, 4428782, 368444078, 36691056110, 4256199137774, 563672814445742, 83921091641375918, 13875375391723852910, 2522552600160248918894, 500141581330626431059502, 107400097037199576065830958
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = sum(S(n,k)*L(k),k=0..n), where S(n,k) are the Stirling numbers of the second kind and L(n) are the central Lah numbers.
E.g.f.: 1/2 + 1/Pi*K(16(exp(x)-1)) where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
|
|
MAPLE
|
a := n -> if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! fi;
seq(sum(combinat[stirling2](n, k)*a(k), k=0..n), n=0..12);
|
|
MATHEMATICA
|
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[StirlingS2[n, k]a[k], {k, 0, n}], {n, 0, 20}]
CoefficientList[Series[1/2 + EllipticK[16*(E^x - 1)]/Pi, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 06 2019 *)
|
|
PROG
|
(Maxima) a(n):= if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n!;
makelist(sum(stirling2(n, k)*a(k), k, 0, n), n, 0, 12);
|
|
CROSSREFS
|
Cf. A187536, A008297, A111596, A187536, A187538, A187539, A187540, A187542, A187543, A187545, A187546, A187547, A187548.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|