login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187540
Binomial partial sums of the central Lah numbers.
11
1, 3, 41, 1315, 63825, 4116611, 331127353, 31915763811, 3585520583585, 460054836028675, 66377105303195721, 10637410917472061603, 1874707445757653437681, 360356280811211873453955, 75028021167256736753934425
OFFSET
0,2
LINKS
FORMULA
Formula: a(n) = 1+sum(binomial(n,k)binomial(2k-1,k-1)(2k)!/k!,k=0..n).
Recurrence: for n>=3, a(n) = 1/n*(-2 +(32 - 48*n + 16*n^2)*a(n-3) + (-31 + 63*n - 32*n^2)*a(n-2) + (3 - 14*n + 16*n^2)*a(n-1) )
E.g.f.: exp(x) (1/2 + 1/Pi K(16x) ), where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
a(n) ~ 16^n*n^(n-1/2)*exp(1/16-n)/sqrt(2*Pi). - Vaclav Kotesovec, Aug 09 2013
MAPLE
seq(1+add(binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!, k=1..n), n=0..20);
MATHEMATICA
Table[1 + Sum[Binomial[n, k]Binomial[2k-1, k-1](2k)!/k!, {k, 1, n}], {n, 0, 20}]
PROG
(Maxima) makelist(1+sum(binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!, k, 1, n), n, 0, 12);
(PARI) a(n) = 1+sum(k=0, n, binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!) \\ Charles R Greathouse IV, Feb 07 2017
KEYWORD
nonn,easy,nice
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved