|
|
A187540
|
|
Binomial partial sums of the central Lah numbers.
|
|
11
|
|
|
1, 3, 41, 1315, 63825, 4116611, 331127353, 31915763811, 3585520583585, 460054836028675, 66377105303195721, 10637410917472061603, 1874707445757653437681, 360356280811211873453955, 75028021167256736753934425
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
Formula: a(n) = 1+sum(binomial(n,k)binomial(2k-1,k-1)(2k)!/k!,k=0..n).
Recurrence: for n>=3, a(n) = 1/n*(-2 +(32 - 48*n + 16*n^2)*a(n-3) + (-31 + 63*n - 32*n^2)*a(n-2) + (3 - 14*n + 16*n^2)*a(n-1) )
E.g.f.: exp(x) (1/2 + 1/Pi K(16x) ), where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
|
|
MAPLE
|
seq(1+add(binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!, k=1..n), n=0..20);
|
|
MATHEMATICA
|
Table[1 + Sum[Binomial[n, k]Binomial[2k-1, k-1](2k)!/k!, {k, 1, n}], {n, 0, 20}]
|
|
PROG
|
(Maxima) makelist(1+sum(binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!, k, 1, n), n, 0, 12);
|
|
CROSSREFS
|
Cf. A187536, A008297, A111596, A187538, A187539, A187542, A187543, A187544, A187545, A187546, A187547, A187548.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|