login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187540 Binomial partial sums of the central Lah numbers. 11
1, 3, 41, 1315, 63825, 4116611, 331127353, 31915763811, 3585520583585, 460054836028675, 66377105303195721, 10637410917472061603, 1874707445757653437681, 360356280811211873453955, 75028021167256736753934425 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
Formula: a(n) = 1+sum(binomial(n,k)binomial(2k-1,k-1)(2k)!/k!,k=0..n).
Recurrence: for n>=3, a(n) = 1/n*(-2 +(32 - 48*n + 16*n^2)*a(n-3) + (-31 + 63*n - 32*n^2)*a(n-2) + (3 - 14*n + 16*n^2)*a(n-1) )
E.g.f.: exp(x) (1/2 + 1/Pi K(16x) ), where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
a(n) ~ 16^n*n^(n-1/2)*exp(1/16-n)/sqrt(2*Pi). - Vaclav Kotesovec, Aug 09 2013
MAPLE
seq(1+add(binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!, k=1..n), n=0..20);
MATHEMATICA
Table[1 + Sum[Binomial[n, k]Binomial[2k-1, k-1](2k)!/k!, {k, 1, n}], {n, 0, 20}]
PROG
(Maxima) makelist(1+sum(binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!, k, 1, n), n, 0, 12);
(PARI) a(n) = 1+sum(k=0, n, binomial(n, k)*binomial(2*k-1, k-1)*(2*k)!/k!) \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
Sequence in context: A012035 A012016 A207993 * A012104 A012147 A012011
KEYWORD
nonn,easy,nice
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 18:04 EDT 2023. Contains 363165 sequences. (Running on oeis4.)