login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187536
Partial sums of the central Lah numbers (A187535).
11
1, 3, 39, 1239, 60039, 3870279, 311229639, 29993362119, 3369233266119, 432276047602119, 62366420037720519, 9994350965362162119, 1761334292457572030919, 338557476887113316030919, 70488382605888266852030919, 15802755831536546966525630919
OFFSET
0,2
FORMULA
a(n) = 1 + Sum_{k=0..n} binomial(2k-1,k-1)*(2k)!/k!.
(n+2)*a(n+2) - (16n^2 + 49n +3 8)*a(n+1) + 4 *(2n+3)^2*a(n) = 0.
Asymptotically a(n) ~ 2^(4n)n^n exp(-n)/sqrt(2n*pi).
MAPLE
A187536 := proc(n) add(A187535(i), i=0..n) ; end proc:
seq(A187536(n), n=0..10) ; # R. J. Mathar, Mar 20 2011
MATHEMATICA
Table[1 + Sum[Binomial[2k-1, k-1](2k)!/k!, {k, 1, n}], {n, 0, 20}]
PROG
(Maxima) makelist(1+sum(binomial(2*k-1, k-1)*(2*k)!/k!, k, 1, n), n, 0, 12);
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 11 2011
STATUS
approved