login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184866
Numbers k such that floor(1/2+k*sqrt(2)) is prime.
3
2, 5, 8, 9, 12, 16, 22, 26, 29, 33, 42, 43, 50, 56, 59, 63, 73, 76, 77, 80, 90, 97, 98, 107, 111, 115, 118, 122, 128, 135, 139, 141, 149, 158, 162, 165, 169, 182, 186, 190, 196, 199, 200, 207, 217, 220, 221, 224, 234, 238, 247, 254, 264, 268, 271, 275, 281, 289, 296, 298, 305, 306, 313, 323, 326, 330, 339, 347, 353, 356, 360, 370, 387, 394, 398, 402, 404, 408, 415, 419, 425, 429, 436, 438, 446, 453, 455, 462, 466, 476, 479, 483, 496, 501, 514, 518, 531, 535, 538, 544, 572, 582, 585, 586, 593
OFFSET
1,1
LINKS
MATHEMATICA
r=2^(1/2); h=1/2; a[n_]:=Floor[n*r+h];
Table[a[n], {n, 1, 120}] (* A022846, int. nearest 2^(1/2) *)
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
(* Lists t1, t2, t3 match A184865, A184866, A184867. *)
PROG
(PARI) isok(k) = isprime(floor(1/2+k*sqrt(2))); \\ Michel Marcus, Jan 30 2018
CROSSREFS
Sequence in context: A276882 A045928 A190768 * A032684 A026448 A258353
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 23 2011
STATUS
approved