login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184865
Primes of the form floor(nr+h), where r=sqrt(2), h=1/2.
3
3, 7, 11, 13, 17, 23, 31, 37, 41, 47, 59, 61, 71, 79, 83, 89, 103, 107, 109, 113, 127, 137, 139, 151, 157, 163, 167, 173, 181, 191, 197, 199, 211, 223, 229, 233, 239, 257, 263, 269, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 349, 359, 373, 379, 383, 389, 397, 409, 419, 421, 431, 433, 443, 457, 461, 467, 479, 491, 499, 503, 509, 523, 547, 557, 563, 569, 571, 577, 587, 593, 601, 607, 617, 619, 631, 641, 643, 653, 659, 673, 677, 683, 701, 709, 727, 733, 751, 757, 761, 769, 809, 823, 827, 829, 839
OFFSET
1,1
COMMENTS
See "conjecture generalized" at A184774.
LINKS
MATHEMATICA
r=2^(1/2); h=1/2; a[n_]:=Floor[n*r+h];
Table[a[n], {n, 1, 120}] (* A022846, int. nearest 2^(1/2) *)
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
(* Lists t1, t2, t3 match A184865, A184866, A184867. *)
Select[Floor[Sqrt[2]Range[1000]+1/2], PrimeQ] (* Harvey P. Dale, Oct 31 2011 *)
PROG
(PARI) lista(nn) = for (k=1, nn, if (isprime(p=floor(1/2+k*sqrt(2))), print1(p, ", "))); \\ Michel Marcus, Jan 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 23 2011
STATUS
approved