login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022846
Nearest integer to n*sqrt(2).
18
0, 1, 3, 4, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 95, 96
OFFSET
0,3
COMMENTS
Let R(i,j) be the rectangle with antidiagonals 1; 2,3; 4,5,6; ...; n^2 is in antidiagonal number a(n). Proof: n^2 is in antidiagonal m iff A000217(m-1)< n^2 <=A000217(m), where A000217(m)=m*(m+1)/2. So m = A002024(n^2) = round(n*sqrt(2)) = a(n). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Mar 07 2003
In the rectangle R(i,j), n^2 is the number in row i=A057049(n) and column j=A057050(n), so that for n >= 1, a(n) = -1 + A057049(n) + A057050(n). - Clark Kimberling, Jan 31 2011
Number of triangular numbers less than n^2. - Philippe Deléham, Mar 08 2013
LINKS
Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
FORMULA
a(n) = A002024(n^2).
a(n+1) - a(n) = 1 or 2. - Philippe Deléham, Mar 08 2013
EXAMPLE
n = 4, n^2 = 16; 0, 1, 3, 6, 10, 15 are triangular numbers in interval [0, 16); a(4) = 6. - Philippe Deléham, Mar 08 2013
MATHEMATICA
Round[Sqrt[2]Range[0, 70]] (* Harvey P. Dale, Jun 18 2013 *)
PROG
(PARI) a(n)=round(n*sqrt(2))
(Magma) [Round(n*Sqrt(2)): n in [0..60]]; // Vincenzo Librandi, Oct 22 2011
(Haskell)
a022846 = round . (* sqrt 2) . fromIntegral
-- Reinhard Zumkeller, Mar 03 2014
(Python)
from math import isqrt
def A022846(n): return isqrt(n**2<<3)+1>>1 # Chai Wah Wu, Feb 10 2023
CROSSREFS
Cf. A063957 (complement of this set).
Cf. A214848 (first differences), also A006338.
Sequence in context: A047299 A186159 A184578 * A083922 A039042 A007378
KEYWORD
nonn,easy
STATUS
approved