login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184868 Primes of the form floor((k-1/2)*(2+sqrt(2))+1/2); i.e., primes in A063957. 4
2, 5, 19, 29, 43, 53, 67, 73, 97, 101, 131, 149, 179, 193, 227, 241, 251, 271, 347, 353, 367, 401, 439, 449, 463, 487, 521, 541, 599, 613, 647, 661, 691, 719, 739, 743, 773, 787, 797, 811, 821, 859, 883, 937, 941, 947, 971, 1009, 1019, 1033, 1087, 1091, 1163, 1193, 1217, 1231, 1279, 1289, 1303, 1361, 1367, 1381, 1429, 1439, 1453, 1483, 1487, 1511, 1531, 1559, 1579, 1613, 1627, 1637, 1699, 1709, 1733, 1753, 1777, 1787, 1801, 1811, 1873, 1907, 1931, 1951, 1979, 1999 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See "conjecture generalized" at A184774.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

MATHEMATICA

a[n_]:=Floor [(n-1/2)*(2+2^(1/2))+1/2];

Table[a[n], {n, 1, 120}]  (* A063957 *)

t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1

t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2

t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 400}]; t3

(* Lists t1, t2, t3 match A184868, A184869, A184870. *)

PROG

(PARI) lista(nn) = for (k=1, nn, if (isprime(p=floor((k-1/2)*(2+sqrt(2))+1/2)), print1(p, ", "))); \\ Michel Marcus, Jan 30 2018

CROSSREFS

Cf. A184774, A184869, A184870.

Sequence in context: A215277 A027714 A219178 * A077317 A092946 A090700

Adjacent sequences:  A184865 A184866 A184867 * A184869 A184870 A184871

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jan 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 20:08 EDT 2019. Contains 328197 sequences. (Running on oeis4.)