The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184868 Primes of the form floor((k-1/2)*(2+sqrt(2))+1/2); i.e., primes in A063957. 4
 2, 5, 19, 29, 43, 53, 67, 73, 97, 101, 131, 149, 179, 193, 227, 241, 251, 271, 347, 353, 367, 401, 439, 449, 463, 487, 521, 541, 599, 613, 647, 661, 691, 719, 739, 743, 773, 787, 797, 811, 821, 859, 883, 937, 941, 947, 971, 1009, 1019, 1033, 1087, 1091, 1163, 1193, 1217, 1231, 1279, 1289, 1303, 1361, 1367, 1381, 1429, 1439, 1453, 1483, 1487, 1511, 1531, 1559, 1579, 1613, 1627, 1637, 1699, 1709, 1733, 1753, 1777, 1787, 1801, 1811, 1873, 1907, 1931, 1951, 1979, 1999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See "conjecture generalized" at A184774. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 MATHEMATICA a[n_]:=Floor [(n-1/2)*(2+2^(1/2))+1/2]; Table[a[n], {n, 1, 120}] (* A063957 *) t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 400}]; t3 (* Lists t1, t2, t3 match A184868, A184869, A184870. *) PROG (PARI) lista(nn) = for (k=1, nn, if (isprime(p=floor((k-1/2)*(2+sqrt(2))+1/2)), print1(p, ", "))); \\ Michel Marcus, Jan 30 2018 CROSSREFS Cf. A184774, A184869, A184870. Sequence in context: A215277 A027714 A219178 * A077317 A092946 A090700 Adjacent sequences: A184865 A184866 A184867 * A184869 A184870 A184871 KEYWORD nonn AUTHOR Clark Kimberling, Jan 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 10:56 EDT 2024. Contains 372824 sequences. (Running on oeis4.)