Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jan 30 2018 21:45:12
%S 2,5,8,9,12,16,22,26,29,33,42,43,50,56,59,63,73,76,77,80,90,97,98,107,
%T 111,115,118,122,128,135,139,141,149,158,162,165,169,182,186,190,196,
%U 199,200,207,217,220,221,224,234,238,247,254,264,268,271,275,281,289,296,298,305,306,313,323,326,330,339,347,353,356,360,370,387,394,398,402,404,408,415,419,425,429,436,438,446,453,455,462,466,476,479,483,496,501,514,518,531,535,538,544,572,582,585,586,593
%N Numbers k such that floor(1/2+k*sqrt(2)) is prime.
%H G. C. Greubel, <a href="/A184866/b184866.txt">Table of n, a(n) for n = 1..10000</a>
%t r=2^(1/2); h=1/2; a[n_]:=Floor[n*r+h];
%t Table[a[n], {n, 1, 120}] (* A022846, int. nearest 2^(1/2) *)
%t t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
%t t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
%t t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
%t (* Lists t1, t2, t3 match A184865, A184866, A184867. *)
%o (PARI) isok(k) = isprime(floor(1/2+k*sqrt(2))); \\ _Michel Marcus_, Jan 30 2018
%Y Cf. A184865, A184867.
%K nonn
%O 1,1
%A _Clark Kimberling_, Jan 23 2011