login
A184815
Numbers m such that prime(m) is of the form k+floor(ks/r)+floor(kt/r), where r=sqrt(2), s=sqrt(3), t=sqrt(5).
4
2, 4, 10, 12, 13, 16, 22, 29, 30, 36, 42, 44, 45, 49, 52, 57, 59, 60, 64, 70, 71, 76, 82, 84, 90, 91, 92, 97, 101, 103, 108, 111, 114, 115, 119, 123, 125, 138, 140, 142, 149, 150, 165, 171, 178, 180, 182, 185, 189, 191, 192, 193, 195, 198, 205, 211, 215, 217, 220, 222, 224, 233, 235, 236, 247, 248, 249, 252, 254, 255, 264, 265, 269, 273, 286, 295, 301, 302, 306, 307, 309, 316, 318, 325, 326, 327, 328, 329, 332, 336
OFFSET
1,1
COMMENTS
A184815, A184816, and A184817 partition the primes:
A184815: 3,7,29,37,... of the form n+[ns/r]+[nt/r].
A184816: 2,5,17,... of the form n+[nr/s]+[nt/s].
A184817: 11,13,19,23,31,... of the form n+[nr/t]+[ns/t].
The Mathematica code can be easily modified to print primes in the three classes.
LINKS
EXAMPLE
See A184812.
MATHEMATICA
r=2^(1/2); s=3^(1/2); t=5^(1/2);
a[n_]:=n+Floor [n*s/r]+Floor[n*t/r];
b[n_]:=n+Floor [n*r/s]+Floor[n*t/s];
c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]
Table[a[n], {n, 1, 120}] (* A184812 *)
Table[b[n], {n, 1, 120}] (* A184813 *)
Table[c[n], {n, 1, 120}] (* A184814 *)
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1;
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2;
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 600}]; t3
t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4;
t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5;
t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 600}]; t6
t7={}; Do[If[PrimeQ[c[n]], AppendTo[t7, c[n]]], {n, 1, 600}]; t7;
t8={}; Do[If[PrimeQ[c[n]], AppendTo[t8, n]], {n, 1, 600}]; t8;
t9={}; Do[If[MemberQ[t7, Prime[n]], AppendTo[t9, n]], {n, 1, 600}]; t9
(* Lists t3, t6, t9 match A184815, A184816, A184817. *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 23 2011
STATUS
approved