login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184812
n+floor(ns/r)+floor(nt/r), where r=sqrt(2), s=sqrt(3), t=sqrt(5).
37
3, 7, 10, 14, 18, 22, 26, 29, 34, 37, 41, 44, 48, 53, 56, 60, 63, 68, 72, 75, 79, 82, 87, 90, 94, 98, 102, 106, 109, 113, 117, 121, 125, 128, 132, 136, 140, 144, 147, 151, 155, 159, 162, 166, 171, 174, 178, 181, 186, 190, 193, 197, 200, 205, 208, 212, 216
OFFSET
1,1
COMMENTS
This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets
{i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are disjoint.
Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n)=n+[ns/r]+[nt/r],
b(n)=n+[nr/s]+[nt/s],
c(n)=n+[nr/t]+[ns/t], where []=floor.
Taking r=sqrt(2), s=sqrt(3), t=sqrt(5) yields
LINKS
FORMULA
a(n)=n+floor(ns/r)+floor(nt/r), r=sqrt(2), s=sqrt(3), t=sqrt(5).
MATHEMATICA
r=2^(1/2); s=3^(1/2); t=5^(1/2);
a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];
b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];
c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]
Table[a[n], {n, 1, 120}] (* A184812 *)
Table[b[n], {n, 1, 120}] (* A184813 *)
Table[c[n], {n, 1, 120}] (* A184814 *)
PROG
(PARI) sr=sqrt(3/2); tr=sqrt(5/2); for(n=1, 100, print1(n+floor(n*sr)+floor(n*tr)", ")) \\ Charles R Greathouse IV, Jul 15 2011
(Maxima) r:sqrt(2)$ s:sqrt(3)$ t:sqrt(5)$
makelist(n+floor(n*s/r)+floor(n*t/r), n, 1, 50); /* Martin Ettl, Oct 18 2012 */
CROSSREFS
Cf. A184813, A184814. Associated partition of the primes: A184815, A184816, A184817.
Sequence in context: A189460 A172323 A190080 * A140487 A310189 A293788
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 22 2011
STATUS
approved