login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184816
Numbers m such that prime(m) is of the form k+floor(kr/s)+floor(kt/s), where r=sqrt(2), s=sqrt(3), t=sqrt(5).
4
1, 3, 7, 14, 18, 19, 21, 23, 24, 26, 34, 37, 39, 40, 41, 50, 53, 54, 55, 56, 65, 68, 69, 72, 78, 80, 81, 83, 86, 93, 95, 96, 98, 105, 106, 109, 113, 117, 124, 126, 129, 131, 133, 135, 137, 139, 143, 145, 148, 152, 157, 158, 159, 160, 161, 162, 168, 169, 172, 173, 174, 176, 183, 187, 190, 197, 200, 207, 208, 212, 214, 219, 229, 232, 234, 238, 242, 243, 245, 246, 257, 258, 259, 266, 267, 268, 270, 275, 276, 278, 279, 280, 281, 284
OFFSET
1,2
COMMENTS
See A184812 and A184815.
LINKS
MATHEMATICA
r=2^(1/2); s=3^(1/2); t=5^(1/2);
a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];
b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];
c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]
Table[a[n], {n, 1, 120}] (* A184812 *)
Table[b[n], {n, 1, 120}] (* A184813 *)
Table[c[n], {n, 1, 120}] (* A184814 *)
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1;
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2;
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 600}]; t3
t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4;
t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5;
t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 600}]; t6
t7={}; Do[If[PrimeQ[c[n]], AppendTo[t7, c[n]]], {n, 1, 600}]; t7;
t8={}; Do[If[PrimeQ[c[n]], AppendTo[t8, n]], {n, 1, 600}]; t8;
t9={}; Do[If[MemberQ[t7, Prime[n]], AppendTo[t9, n]], {n, 1, 600}]; t9
(* Lists t3, t6, t9 match A184815, A184816, A184817. *)
PrimePi/@Select[Table[k+Floor[(k Sqrt[2])/Sqrt[3]]+Floor[(k Sqrt[5])/Sqrt[3]], {k, 600}], PrimeQ] (* Harvey P. Dale, Apr 25 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 23 2011
STATUS
approved