login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that prime(m) is of the form k+floor(kr/s)+floor(kt/s), where r=sqrt(2), s=sqrt(3), t=sqrt(5).
4

%I #11 Apr 25 2023 14:54:46

%S 1,3,7,14,18,19,21,23,24,26,34,37,39,40,41,50,53,54,55,56,65,68,69,72,

%T 78,80,81,83,86,93,95,96,98,105,106,109,113,117,124,126,129,131,133,

%U 135,137,139,143,145,148,152,157,158,159,160,161,162,168,169,172,173,174,176,183,187,190,197,200,207,208,212,214,219,229,232,234,238,242,243,245,246,257,258,259,266,267,268,270,275,276,278,279,280,281,284

%N Numbers m such that prime(m) is of the form k+floor(kr/s)+floor(kt/s), where r=sqrt(2), s=sqrt(3), t=sqrt(5).

%C See A184812 and A184815.

%H G. C. Greubel, <a href="/A184816/b184816.txt">Table of n, a(n) for n = 1..5000</a>

%t r=2^(1/2); s=3^(1/2); t=5^(1/2);

%t a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];

%t b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];

%t c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]

%t Table[a[n],{n,1,120}] (* A184812 *)

%t Table[b[n],{n,1,120}] (* A184813 *)

%t Table[c[n],{n,1,120}] (* A184814 *)

%t t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1;

%t t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2;

%t t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,600}];t3

%t t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4;

%t t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5;

%t t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,600}];t6

%t t7={};Do[If[PrimeQ[c[n]], AppendTo[t7,c[n]]],{n,1,600}];t7;

%t t8={};Do[If[PrimeQ[c[n]], AppendTo[t8,n]],{n,1,600}];t8;

%t t9={};Do[If[MemberQ[t7,Prime[n]],AppendTo[t9,n]],{n,1,600}];t9

%t (* Lists t3, t6, t9 match A184815, A184816, A184817. *)

%t PrimePi/@Select[Table[k+Floor[(k Sqrt[2])/Sqrt[3]]+Floor[(k Sqrt[5])/Sqrt[3]],{k,600}],PrimeQ] (* _Harvey P. Dale_, Apr 25 2023 *)

%Y Cf. A184812, A184815, A184817.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 23 2011