login
A249446
Numbers n such that 2*(n^2-1) - 1 and 2*(n^2-1) + 1 are primes.
3
2, 4, 10, 11, 34, 41, 46, 49, 56, 59, 76, 85, 95, 125, 160, 181, 185, 196, 200, 206, 220, 245, 266, 280, 295, 301, 304, 346, 365, 379, 386, 391, 440, 470, 505, 556, 571, 595, 659, 679, 689, 731, 784, 815, 820, 854, 869, 896, 944, 959, 994, 1001, 1004, 1015, 1025, 1154, 1250, 1345, 1376
OFFSET
1,1
COMMENTS
Subsequence of A066049. - Michel Marcus, Oct 29 2014
n such that 2*n^2 - 2 is in A014574. - Robert Israel, Nov 18 2014
LINKS
EXAMPLE
2 is in this sequence because 2*(2^2-1) - 1 = 5 and 2*(2^2-1) + 1 = 7 are both prime.
MAPLE
select(n -> isprime(2*n^2-3) and isprime(2*n^2-1), [$1 .. 10000]); # Robert Israel, Nov 18 2014
MATHEMATICA
Select[Range[0, 1500], PrimeQ[2 #^2 - 3] && PrimeQ[2 #^2 - 1] &] (* Vincenzo Librandi, Oct 29 2014 *)
PROG
(Magma) [ n: n in [1..1400] | IsPrime(2*(n^2-1)-1) and IsPrime(2*(n^2-1)+1) ];
(PARI) isok(n) = isprime(2*(n^2-1) - 1) && isprime(2*(n^2-1) + 1); \\ Michel Marcus, Oct 31 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved