Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 30 2018 09:48:17
%S 2,4,10,12,13,16,22,29,30,36,42,44,45,49,52,57,59,60,64,70,71,76,82,
%T 84,90,91,92,97,101,103,108,111,114,115,119,123,125,138,140,142,149,
%U 150,165,171,178,180,182,185,189,191,192,193,195,198,205,211,215,217,220,222,224,233,235,236,247,248,249,252,254,255,264,265,269,273,286,295,301,302,306,307,309,316,318,325,326,327,328,329,332,336
%N Numbers m such that prime(m) is of the form k+floor(ks/r)+floor(kt/r), where r=sqrt(2), s=sqrt(3), t=sqrt(5).
%C A184815, A184816, and A184817 partition the primes:
%C A184815: 3,7,29,37,... of the form n+[ns/r]+[nt/r].
%C A184816: 2,5,17,... of the form n+[nr/s]+[nt/s].
%C A184817: 11,13,19,23,31,... of the form n+[nr/t]+[ns/t].
%C The Mathematica code can be easily modified to print primes in the three classes.
%H G. C. Greubel, <a href="/A184815/b184815.txt">Table of n, a(n) for n = 1..5000</a>
%e See A184812.
%t r=2^(1/2); s=3^(1/2); t=5^(1/2);
%t a[n_]:=n+Floor [n*s/r]+Floor[n*t/r];
%t b[n_]:=n+Floor [n*r/s]+Floor[n*t/s];
%t c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]
%t Table[a[n],{n,1,120}] (* A184812 *)
%t Table[b[n],{n,1,120}] (* A184813 *)
%t Table[c[n],{n,1,120}] (* A184814 *)
%t t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1;
%t t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2;
%t t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,600}];t3
%t t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4;
%t t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5;
%t t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,600}];t6
%t t7={};Do[If[PrimeQ[c[n]], AppendTo[t7,c[n]]],{n,1,600}];t7;
%t t8={};Do[If[PrimeQ[c[n]], AppendTo[t8,n]],{n,1,600}];t8;
%t t9={};Do[If[MemberQ[t7,Prime[n]],AppendTo[t9,n]],{n,1,600}];t9
%t (* Lists t3, t6, t9 match A184815, A184816, A184817. *)
%Y Cf. A184812, A184816, A184817.
%K nonn
%O 1,1
%A _Clark Kimberling_, Jan 23 2011