OFFSET
1,2
COMMENTS
This is often quoted for a different lattice constant and multiplied by 2/sqrt(3) = 1.1547... = 10*A020832, which gives 1.76267...*1.1547... = 2.03536151... given in Zucker's Table 5 as the alpha for the CsCl structure, and by Sakamoto as the M_d for the B2 lattice. Given Zucker's b(1) = 0.774386141424002815... = A185577, this constant here is sqrt(3)*(3*b(1)+A085469)/4. - R. J. Mathar, Jan 28 2011
The CsCl structure consists of two interpenetrating simple cubic lattices of ions with charges +1 and -1, together occupying all the sites of the body-centered cubic lattice. - Andrey Zabolotskiy, Oct 21 2019
LINKS
Leslie Glasser, Solid-State Energetics and Electrostatics: Madelung Constants and Madelung Energies, Inorg. Chem., 2012, 51 (4), 2420-2424.
Y. Sakamoto, Madelung Constants of Simple Crystals Expressed in Terms of Born's Basic Potentials of 15 Figures, Journal of Chemical Physics, 28 (1958), 164-165. Errata: J. Chem. Phys, 28 (1958), 733; J. Chem. Phys, 28 (1958), 1253.
Nicolas Tavernier, Gian Luigi Bendazzoli, Véronique Brumas, Stefano Evangelisti, and J. A. Berger, Clifford boundary conditions: a simple direct-sum evaluation of Madelung constants, J. Phys. Chem. Lett., 11 (2020), 7090-7095; arXiv:2006.01259 [physics.comp-ph], 2020.
I. J. Zucker, Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures, J. Phys. A: Math. Gen. 8 (11) (1975) 1734.
Wikipedia, Madelung constant
MATHEMATICA
digits = 105;
m0 = 50; (* initial number of terms *)
dm = 10; (* number of terms increment *)
dd = 10; (* precision excess *)
Clear[f];
f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((2 + (-1)^n) Csch[s*Pi])/s // N[#, digits + dd]&);
f[m_] := f[m] = Pi/2 - (7 Log[2])/2 + 4 Sum[f[n, p], {n, 1, m}, {p, 1, m}];
f[m = m0];
f[m += dm];
While[Abs[f[m] - f[m - dm]] > 10^(-digits - dd), Print["f(", m, ") = ", f[m]]; m += dm];
A185577 = f[m];
Clear[g];
g[m_] := g[m] = 12 Pi Sum[Sech[(Pi/2) Sqrt[(2 j + 1)^2 + (2 k + 1)^2]]^2, {j, 0, m}, {k, 0, m}] // N[#, digits + dd]&;
g[m = m0];
g[m += dm];
While[Abs[g[m] - g[m - dm]] > 10^(-digits - dd), Print["g(", m, ") = ", g[m]]; m += dm];
A085469 = g[m];
RealDigits[A181152, 10, digits][[1]] (* Jean-François Alcover, May 07 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Leslie Glasser, Jan 24 2011
EXTENSIONS
More terms (using the above comment from R. J. Mathar and terms from the b-files for A085469 and A185577) from Jon E. Schoenfield, Mar 10 2018
Definition corrected by Andrey Zabolotskiy, Oct 21 2019
a(88)-a(105) from Jean-François Alcover, May 07 2021
STATUS
approved