login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181152
Decimal expansion of Madelung constant (negated) for the CsCl structure.
5
1, 7, 6, 2, 6, 7, 4, 7, 7, 3, 0, 7, 0, 9, 8, 8, 3, 9, 7, 9, 3, 5, 6, 7, 3, 3, 2, 0, 6, 3, 8, 6, 4, 4, 2, 9, 1, 1, 7, 0, 5, 2, 8, 6, 1, 9, 5, 8, 8, 5, 8, 5, 2, 8, 0, 6, 4, 9, 4, 1, 8, 4, 3, 7, 7, 2, 7, 9, 6, 6, 2, 2, 3, 7, 6, 9, 3, 4, 0, 8, 3, 0, 4, 7, 1, 5, 0, 9, 4, 5, 8, 1, 1, 2, 1, 6, 9, 8, 8, 9, 0, 8, 5, 6, 9
OFFSET
1,2
COMMENTS
This is often quoted for a different lattice constant and multiplied by 2/sqrt(3) = 1.1547... = 10*A020832, which gives 1.76267...*1.1547... = 2.03536151... given in Zucker's Table 5 as the alpha for the CsCl structure, and by Sakamoto as the M_d for the B2 lattice. Given Zucker's b(1) = 0.774386141424002815... = A185577, this constant here is sqrt(3)*(3*b(1)+A085469)/4. - R. J. Mathar, Jan 28 2011
The CsCl structure consists of two interpenetrating simple cubic lattices of ions with charges +1 and -1, together occupying all the sites of the body-centered cubic lattice. - Andrey Zabolotskiy, Oct 21 2019
LINKS
Leslie Glasser, Solid-State Energetics and Electrostatics: Madelung Constants and Madelung Energies, Inorg. Chem., 2012, 51 (4), 2420-2424.
Nicolas Tavernier, Gian Luigi Bendazzoli, Véronique Brumas, Stefano Evangelisti, and J. A. Berger, Clifford boundary conditions: a simple direct-sum evaluation of Madelung constants, J. Phys. Chem. Lett., 11 (2020), 7090-7095; arXiv:2006.01259 [physics.comp-ph], 2020.
MATHEMATICA
digits = 105;
m0 = 50; (* initial number of terms *)
dm = 10; (* number of terms increment *)
dd = 10; (* precision excess *)
Clear[f];
f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((2 + (-1)^n) Csch[s*Pi])/s // N[#, digits + dd]&);
f[m_] := f[m] = Pi/2 - (7 Log[2])/2 + 4 Sum[f[n, p], {n, 1, m}, {p, 1, m}];
f[m = m0];
f[m += dm];
While[Abs[f[m] - f[m - dm]] > 10^(-digits - dd), Print["f(", m, ") = ", f[m]]; m += dm];
A185577 = f[m];
Clear[g];
g[m_] := g[m] = 12 Pi Sum[Sech[(Pi/2) Sqrt[(2 j + 1)^2 + (2 k + 1)^2]]^2, {j, 0, m}, {k, 0, m}] // N[#, digits + dd]&;
g[m = m0];
g[m += dm];
While[Abs[g[m] - g[m - dm]] > 10^(-digits - dd), Print["g(", m, ") = ", g[m]]; m += dm];
A085469 = g[m];
A181152 = Sqrt[3] (A085469 - 3 A185577)/4;
RealDigits[A181152, 10, digits][[1]] (* Jean-François Alcover, May 07 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Leslie Glasser, Jan 24 2011
EXTENSIONS
More terms (using the above comment from R. J. Mathar and terms from the b-files for A085469 and A185577) from Jon E. Schoenfield, Mar 10 2018
Definition corrected by Andrey Zabolotskiy, Oct 21 2019
a(88)-a(105) from Jean-François Alcover, May 07 2021
STATUS
approved