Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Oct 06 2021 03:28:48
%S 1,7,6,2,6,7,4,7,7,3,0,7,0,9,8,8,3,9,7,9,3,5,6,7,3,3,2,0,6,3,8,6,4,4,
%T 2,9,1,1,7,0,5,2,8,6,1,9,5,8,8,5,8,5,2,8,0,6,4,9,4,1,8,4,3,7,7,2,7,9,
%U 6,6,2,2,3,7,6,9,3,4,0,8,3,0,4,7,1,5,0,9,4,5,8,1,1,2,1,6,9,8,8,9,0,8,5,6,9
%N Decimal expansion of Madelung constant (negated) for the CsCl structure.
%C This is often quoted for a different lattice constant and multiplied by 2/sqrt(3) = 1.1547... = 10*A020832, which gives 1.76267...*1.1547... = 2.03536151... given in Zucker's Table 5 as the alpha for the CsCl structure, and by Sakamoto as the M_d for the B2 lattice. Given Zucker's b(1) = 0.774386141424002815... = A185577, this constant here is sqrt(3)*(3*b(1)+A085469)/4. - _R. J. Mathar_, Jan 28 2011
%C The CsCl structure consists of two interpenetrating simple cubic lattices of ions with charges +1 and -1, together occupying all the sites of the body-centered cubic lattice. - _Andrey Zabolotskiy_, Oct 21 2019
%H Leslie Glasser, <a href="https://doi.org/10.1021/ic2023852">Solid-State Energetics and Electrostatics: Madelung Constants and Madelung Energies</a>, Inorg. Chem., 2012, 51 (4), 2420-2424.
%H Y. Sakamoto, <a href="https://doi.org/10.1063/1.1744060">Madelung Constants of Simple Crystals Expressed in Terms of Born's Basic Potentials of 15 Figures</a>, Journal of Chemical Physics, 28 (1958), 164-165. Errata: <a href="https://doi.org/10.1063/1.1744237">J. Chem. Phys, 28 (1958), 733</a>; <a href="https://doi.org/10.1063/1.1744387">J. Chem. Phys, 28 (1958), 1253</a>.
%H Nicolas Tavernier, Gian Luigi Bendazzoli, Véronique Brumas, Stefano Evangelisti, and J. A. Berger, <a href="https://doi.org/10.1021/acs.jpclett.0c01684">Clifford boundary conditions: a simple direct-sum evaluation of Madelung constants</a>, J. Phys. Chem. Lett., 11 (2020), 7090-7095; arXiv:<a href="https://arxiv.org/abs/2006.01259">2006.01259</a> [physics.comp-ph], 2020.
%H I. J. Zucker, <a href="https://doi.org/10.1088/0305-4470/8/11/008">Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures</a>, J. Phys. A: Math. Gen. 8 (11) (1975) 1734.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Madelung_constant">Madelung constant</a>
%t digits = 105;
%t m0 = 50; (* initial number of terms *)
%t dm = 10; (* number of terms increment *)
%t dd = 10; (* precision excess *)
%t Clear[f];
%t f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((2 + (-1)^n) Csch[s*Pi])/s // N[#, digits + dd]&);
%t f[m_] := f[m] = Pi/2 - (7 Log[2])/2 + 4 Sum[f[n, p], {n, 1, m}, {p, 1, m}];
%t f[m = m0];
%t f[m += dm];
%t While[Abs[f[m] - f[m - dm]] > 10^(-digits - dd), Print["f(", m, ") = ", f[m]]; m += dm];
%t A185577 = f[m];
%t Clear[g];
%t g[m_] := g[m] = 12 Pi Sum[Sech[(Pi/2) Sqrt[(2 j + 1)^2 + (2 k + 1)^2]]^2, {j, 0, m}, {k, 0, m}] // N[#, digits + dd]&;
%t g[m = m0];
%t g[m += dm];
%t While[Abs[g[m] - g[m - dm]] > 10^(-digits - dd), Print["g(", m, ") = ", g[m]]; m += dm];
%t A085469 = g[m];
%t A181152 = Sqrt[3] (A085469 - 3 A185577)/4;
%t RealDigits[A181152, 10, digits][[1]] (* _Jean-François Alcover_, May 07 2021 *)
%Y Cf. A085469, A088537, A090734.
%K nonn,cons
%O 1,2
%A _Leslie Glasser_, Jan 24 2011
%E More terms (using the above comment from _R. J. Mathar_ and terms from the b-files for A085469 and A185577) from _Jon E. Schoenfield_, Mar 10 2018
%E Definition corrected by _Andrey Zabolotskiy_, Oct 21 2019
%E a(88)-a(105) from _Jean-François Alcover_, May 07 2021