login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177810
Triangle binomial(6*n,6*m), 0 <= m <= n, read by rows.
0
1, 1, 1, 1, 924, 1, 1, 18564, 18564, 1, 1, 134596, 2704156, 134596, 1, 1, 593775, 86493225, 86493225, 593775, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 5245786, 11058116888, 353697121050, 353697121050, 11058116888, 5245786, 1
OFFSET
0,5
COMMENTS
Row sums are A070967. k=6 in binomial(k*n,k*m) sequence similar to k=2 in A086645, k=4 in A070775,...
FORMULA
Left-right symmetric: binomial(6*n,6*m) = binomial(6*n,6*(n-m)).
EXAMPLE
1;
1, 1;
1, 924, 1;
1, 18564, 18564, 1;
1, 134596, 2704156, 134596, 1;
1, 593775, 86493225, 86493225, 593775, 1;
MATHEMATICA
t[n_, m_] := Binomial[n, 6*m]; Flatten@Table[Table[t[n, m], {m, 0, n/6}], {n, 0, 42, 6}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 13 2010
STATUS
approved