login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle binomial(6*n,6*m), 0 <= m <= n, read by rows.
0

%I #17 Mar 12 2014 16:37:17

%S 1,1,1,1,924,1,1,18564,18564,1,1,134596,2704156,134596,1,1,593775,

%T 86493225,86493225,593775,1,1,1947792,1251677700,9075135300,

%U 1251677700,1947792,1,1,5245786,11058116888,353697121050,353697121050,11058116888,5245786,1

%N Triangle binomial(6*n,6*m), 0 <= m <= n, read by rows.

%C Row sums are A070967. k=6 in binomial(k*n,k*m) sequence similar to k=2 in A086645, k=4 in A070775,...

%F Left-right symmetric: binomial(6*n,6*m) = binomial(6*n,6*(n-m)).

%e 1;

%e 1, 1;

%e 1, 924, 1;

%e 1, 18564, 18564, 1;

%e 1, 134596, 2704156, 134596, 1;

%e 1, 593775, 86493225, 86493225, 593775, 1;

%t t[n_, m_] := Binomial[n, 6*m]; Flatten@Table[Table[t[n, m], {m, 0, n/6}], {n, 0, 42, 6}]

%Y Cf. A034839, A177808, A139459, A070782, A177809, A070967.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Dec 13 2010