login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176824
a(n) = (n+1)^n mod n^n.
6
0, 1, 10, 113, 1526, 24337, 450066, 9492289, 225159022, 5937424601, 172385029466, 5465884225969, 187964560069638, 6968912374274593, 277133723845128226, 11767703728247765249, 531431035966023003614, 25434534147318166381993, 1286040688679372821752042
OFFSET
1,3
LINKS
FORMULA
From Peter Bala, Sep 12 2012: (Start)
a(n) = (n+1)^n - 2*n^n (since 2*n^n <= (n+1)^n < 3*n^n for n >= 1).
In terms of the tree function T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! of A000169 the e.g.f. is T(x)*(2*x + T(x)*(T(x)-2))/(x^2*(T(x)-1)^3) = x + 10*x^2/2! + 113*x^3/3! + ... . (End)
a(n) = Sum_{i=1..n-1} C(n,i-1)*i^(i-1)*(n-i)^(n-i). - Vladimir Kruchinin, Sep 07 2015
a(n) = A000169(n+1) - 2*A000312(n). - Michel Marcus, Sep 07 2015, after Peter Bala
MAPLE
A176824:=n->(n+1)^n mod n^n: seq(A176824(n), n=1..25); # Wesley Ivan Hurt, Sep 10 2015
MATHEMATICA
Table[Mod[(n+1)^n, n^n], {n, 30}]
PROG
(Magma) [(n+1)^n mod n^n: n in [1..20]]; // Vincenzo Librandi, Sep 07 2015
(PARI) first(m)=vector(m, i, ((i+1)^i) % (i^i)) \\ Anders Hellström, Sep 07 2015
(SageMath) [(n+1)^n%n^n for n in range(1, 31)] # G. C. Greubel, May 23 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(19) from Vincenzo Librandi, Sep 07 2015
STATUS
approved