login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176826
a(n+1) = Sum_{p=0..n} (a(p)*a(n-p)+k)+l for n>=1, where a(0)=1, a(1)=1, k=1 and l=-1.
1
1, 1, 3, 9, 27, 85, 283, 985, 3539, 13013, 48707, 184921, 710347, 2755669, 10780139, 42477977, 168439619, 671641685, 2691362195, 10832277401, 43771088315, 177504638933, 722178443963, 2946919157081, 12057932335283, 49461067106261, 203355663470307, 837870162610137
OFFSET
0,3
FORMULA
G.f.: (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(-7*n+2)*a(n-1) +3*(5*n-7)*a(n-2) +(-17*n+46)*a(n-3) +4*(2*n-7)*a(n-4)=0. - R. J. Mathar, Feb 18 2016
a(n) = Sum_{k=0..n} C(k)*Sum_{i=0..(n-k)/2} binomial(k+1,i)*binomial(n-k-1,n-k-2*i), where C(k) is the k-th Catalan number (A000108). - Vladimir Kruchinin, May 09 2018
a(n) ~ sqrt(3*((32 - 13*sqrt(2))^(1/3) + (32 + 13*sqrt(2))^(1/3))) * ((2 + (sqrt(2) - 1)^(2/3) + (1 + sqrt(2))^(2/3))^n / (2^(11/6) * sqrt(Pi) * n^(3/2))). - Vaclav Kotesovec, May 11 2018
EXAMPLE
a(2)=2*1*1+2-1=3. a(3)=2*1*3+2+1^1+1-1=9. a(4)=2*1*9+2+2*1*3+2-1=27.
MAPLE
l:=-1: : k := 1 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
PROG
(Maxima)
a(n):=sum((binomial(2*k, k)*sum(binomial(k+1, i)*binomial(n-k-1, n-k-2*i), i, 0, (n-k)/2))/(k+1), k, 0, n); /* Vladimir Kruchinin, May 09 2018 */
CROSSREFS
Sequence in context: A099787 A351342 A308520 * A146786 A151029 A179263
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 27 2010
EXTENSIONS
More terms from Vaclav Kotesovec, May 11 2018
STATUS
approved