login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176759
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=0, k=1 and l=-1.
1
1, 0, 1, 4, 11, 27, 67, 178, 505, 1489, 4473, 13593, 41749, 129579, 406021, 1282464, 4077987, 13041655, 41919347, 135352451, 438827223, 1427986281, 4662359911, 15268900019, 50143755435, 165095296125, 544847069819, 1802020334105
OFFSET
0,4
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(-7*n+2)*a(n-1) +(19*n-29)*a(n-2) +(-29*n+82)*a(n-3) +4*(5*n-19)*a(n-4) +4*(-n+5)*a(n-5)=0. - R. J. Mathar, Feb 18 2016
EXAMPLE
a(2)=2*1*0+2-1=1. a(3)=2*1*1+2+0^2+1-1=4. a(4)=2*1*4+2+2*0*1+2-1=11.
MAPLE
l:=-1: : k := 1 : m:=0:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176757.
Sequence in context: A027439 A108985 A014151 * A266009 A096124 A376716
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 25 2010
STATUS
approved