login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014151
Apply partial sum operator thrice to Catalan numbers.
3
1, 4, 11, 27, 66, 170, 471, 1398, 4381, 14282, 47897, 164012, 570639, 2010678, 7158569, 25709157, 93020112, 338736224, 1240496193, 4565563209, 16878057692, 62644246662, 233346693759, 872045012633, 3268643350608, 12285088109136, 46288732360369, 174813127020311, 661606223839322
OFFSET
0,2
LINKS
FORMULA
D-finite with recurrence: n*(n+1)*a(n) = 2*n*(3*n+1)*a(n-1) - (9*n^2+7*n-4)*a(n-2) + 2*(n+1)*(2*n+1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 2^(2*n+6)/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
G.f.: C(x)/(1-x)^3, where C(x) is g.f. of Catalan numbers. - Vladimir Kruchinin, Oct 18 2016
a(n) = Sum_{k=0..n} binomial(n+3,k+3) * r(k), r(k) = A005043(k). - Vladimir Kruchinin, Oct 18 2016
MATHEMATICA
Flatten[{1, RecurrenceTable[{n*(n+1)*a[n] == 2*n*(3*n+1)*a[n-1] - (9*n^2+7*n-4)*a[n-2] + 2*(n+1)*(2*n+1)*a[n-3], a[1]==4, a[2]==11, a[3]==27}, a, {n, 100}]}]
PROG
(PARI)
sm(v)={my(s=vector(#v)); s[1]=v[1]; for(n=2, #v, s[n]=v[n]+s[n-1]); s; }
C(n)=binomial(2*n, n)/(n+1);
sm(sm(sm(vector(66, n, C(n-1)))))
/* Joerg Arndt, May 04 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved