login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024130
a(n) = 11^n - n^3.
2
1, 10, 113, 1304, 14577, 160926, 1771345, 19486828, 214358369, 2357946962, 25937423601, 285311669280, 3138428374993, 34522712141734, 379749833580497, 4177248169412276, 45949729863568065, 505447028499288858, 5559917313492225649, 61159090448414539432
OFFSET
0,2
FORMULA
From Colin Barker, Oct 11 2018: (Start)
G.f.: (1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)).
a(n) = 15*a(n-1) - 50*a(n-2) + 70*a(n-3) - 45*a(n-4) + 11*a(n-5) for n>4.
(End)
MATHEMATICA
Table[11^n-n^3, {n, 0, 30}] (* or *) LinearRecurrence[{15, -50, 70, -45, 11}, {1, 10, 113, 1304, 14577}, 30] (* Harvey P. Dale, Jul 30 2018 *)
PROG
(Magma) [11^n-n^3: n in [0..20]]; // Vincenzo Librandi, Jul 01 2011
(PARI) a(n)=11^n-n^3 \\ Charles R Greathouse IV, Jul 01 2011
(PARI) Vec((1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)) + O(x^40)) \\ Colin Barker, Oct 11 2018
CROSSREFS
Sequence in context: A181042 A263370 A129866 * A176824 A196983 A199908
KEYWORD
nonn,easy
STATUS
approved