%I #22 Sep 08 2022 08:44:48
%S 1,10,113,1304,14577,160926,1771345,19486828,214358369,2357946962,
%T 25937423601,285311669280,3138428374993,34522712141734,
%U 379749833580497,4177248169412276,45949729863568065,505447028499288858,5559917313492225649,61159090448414539432
%N a(n) = 11^n - n^3.
%H Vincenzo Librandi, <a href="/A024130/b024130.txt">Table of n, a(n) for n = 0..300</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15,-50,70,-45,11).
%F From _Colin Barker_, Oct 11 2018: (Start)
%F G.f.: (1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)).
%F a(n) = 15*a(n-1) - 50*a(n-2) + 70*a(n-3) - 45*a(n-4) + 11*a(n-5) for n>4.
%F (End)
%t Table[11^n-n^3,{n,0,30}] (* or *) LinearRecurrence[{15,-50,70,-45,11},{1,10,113,1304,14577},30] (* _Harvey P. Dale_, Jul 30 2018 *)
%o (Magma) [11^n-n^3: n in [0..20]]; // _Vincenzo Librandi_, Jul 01 2011
%o (PARI) a(n)=11^n-n^3 \\ _Charles R Greathouse IV_, Jul 01 2011
%o (PARI) Vec((1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)) + O(x^40)) \\ _Colin Barker_, Oct 11 2018
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_